Assessment of coral health in the coastal areas of the Persian Gulf

2013 ◽  
Vol 48 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Mehdi Bolouki Kourandeh ◽  
S. Mohammad Bagher Nabavi ◽  
Mahmood Sinaei
2012 ◽  
Vol 34 (3) ◽  
pp. 705-713 ◽  
Author(s):  
Mehrnoosh Shirani ◽  
Alireza Mirvaghefi ◽  
Hamid Farahmand ◽  
Mohammad Abdollahi

2019 ◽  
Vol 6 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Mehdi Khoobdel ◽  
◽  
Davoud Keshavarzi ◽  
Seyed Hassan Mossa-Kazemi ◽  
Hossein Sobati ◽  
...  

2014 ◽  
Author(s):  
Jahangir Vajed Samiei ◽  
Abolfazl Saleh ◽  
Ali Mehdinia ◽  
Arash Shirvani ◽  
Mohsen Kayal

With ongoing climate change, coral susceptibility to thermal stress constitutes a central concern in reef conservation. In the Persian Gulf, coral reefs are confronted with the most extreme temperatures. Over the last decades, both annual hot and cold peak periods in this region have been associated with episodes of coral bleaching and mortality. Using physiological performance as a measure of coral health, we investigated the thermal susceptibility of the common acroporid coral from the Persian Gulf, Acropora downingi, in Hengam Island where temperature oscillates seasonally in the range 20.2-34.2°C. In a series of two short-term experiments, we exposed corals (1) to the constant temperature levels of summer versus winter, and (2) to progressive temperature deviations from the annual mean toward the two extreme seasonal values and beyond. We monitored four indictors of coral physiological performance: net photosynthesis (Pn), dark respiration (R), autotrophic capability (Pn/R), and survival. Warming revealed detrimental for Pn and survival of corals, while equivalent cooling did not. Pn/R was lower at the warmer thermal level within each season, and during summer compared to winter. Corals exposed to the maximum temperature of summer displayed Pn/R<1, inferring that photosynthetic performance could not support basal metabolic needs under this environment and that corals had to import organic matter or draw on their reserves to compensate for carbon losses during respiration. We therefore suggest that the Persian Gulf populations of A. downingi are more sensitive to the extreme temperatures endured in summer compared to that experienced in winter; and they may be impacted by future increases in water temperature.


2014 ◽  
Author(s):  
Jahangir Vajed Samiei ◽  
Abolfazl Saleh ◽  
Ali Mehdinia ◽  
Arash Shirvani ◽  
Mohsen Kayal

With ongoing climate change, coral susceptibility to thermal stress constitutes a central concern in reef conservation. In the Persian Gulf, coral reefs are confronted with the most extreme temperatures. Over the last decades, both annual hot and cold peak periods in this region have been associated with episodes of coral bleaching and mortality. Using physiological performance as a measure of coral health, we investigated the thermal susceptibility of the common acroporid coral from the Persian Gulf, Acropora downingi, in Hengam Island where temperature oscillates seasonally in the range 20.2-34.2°C. In a series of two short-term experiments, we exposed corals (1) to the constant temperature levels of summer versus winter, and (2) to progressive temperature deviations from the annual mean toward the two extreme seasonal values and beyond. We monitored four indictors of coral physiological performance: net photosynthesis (Pn), dark respiration (R), autotrophic capability (Pn/R), and survival. Warming revealed detrimental for Pn and survival of corals, while equivalent cooling did not. Pn/R was lower at the warmer thermal level within each season, and during summer compared to winter. Corals exposed to the maximum temperature of summer displayed Pn/R<1, inferring that photosynthetic performance could not support basal metabolic needs under this environment and that corals had to import organic matter or draw on their reserves to compensate for carbon losses during respiration. We therefore suggest that the Persian Gulf populations of A. downingi are more sensitive to the extreme temperatures endured in summer compared to that experienced in winter; and they may be impacted by future increases in water temperature.


1917 ◽  
Vol 83 (2146supp) ◽  
pp. 100-101
Author(s):  
Edwin E. Calverley

Sign in / Sign up

Export Citation Format

Share Document