oil pollution
Recently Published Documents


TOTAL DOCUMENTS

2317
(FIVE YEARS 476)

H-INDEX

42
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 376
Author(s):  
Hanyu Wen ◽  
Yu-I Hsu ◽  
Hiroshi Uyama

Oil separation is crucial for avoiding environmental pollution originating from industrial wastewater and oil spillage; therefore, it is essential to develop techniques for oil separation. Herein, a new membrane with superhydrophilicity was synthesized by a facile, green, and low-cost method. First, cellulose non-woven fabric (CNWF) was modified by poly (catechin) (pCA), which has good antioxidant and antibacterial activities, to make it unaffected by ultraviolet light and to improve the stability of the structure. Then, hydrolyzed polydimethylsiloxane (PDMS) was coated on the pCA@CNWF surface via chemical bonding to make the composite hydrophobic. This durable superhydrophobic fabric can be used to separate various oil/water mixtures by gravity-driven forces with high separation efficiency (over 98.9%). Additionally, the PDMS-pCA@CNWF possesses the advantages of flexibility, high efficiency, and an outstanding self-cleaning performance, and demonstrates significant potential for applications in various environments, even under various harsh conditions, which make it very promising for the treatment of oil pollution in practical applications.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Nurul Aini Puasa ◽  
Siti Aqlima Ahmad ◽  
Nur Nadhirah Zakaria ◽  
Khalilah Abdul Khalil ◽  
Siti Hajar Taufik ◽  
...  

Oil pollution such as diesel poses a significant threat to the environment. Due to this, there is increasing interest in using natural materials mainly from agricultural waste as organic oil spill sorbents. Oil palm’s empty fruit bunch (EFB), a cost-effective material, non-toxic, renewable resource, and abundantly available in Malaysia, contains cellulosic materials that have been proven to show a good result in pollution treatment. This study evaluated the optimum screening part of EFB that efficiently absorbs oil and the physicochemical characterisation of untreated and treated EFB fibre using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The treatment conditions were optimised using one-factor-at-a-time (OFAT), which identified optimal treatment conditions of 170 °C, 20 min, 0.1 g/cm3, and 10% diesel, resulting in 23 mL of oil absorbed. The predicted model was highly significant in statistical Response Surface Methodology (RSM) and confirmed that all the parameters (temperature, time, packing density, and diesel concentration) significantly influenced the oil absorbed. The predicted values in RSM were 175 °C, 22.5 min, 0.095 g/cm3, and 10%, which resulted in 24 mL of oil absorbed. Using the experimental values generated by RSM, 175 °C, 22.5 min, 0.095 g/cm3, and 10%, the highest oil absorption achieved was 24.33 mL. This study provides further evidence, as the data suggested that RSM provided a better approach to obtain a high efficiency of oil absorbed.


2022 ◽  
Vol 354 ◽  
pp. 00071
Author(s):  
Alexandru Florin Simion ◽  
Angelica Nicoleta Găman ◽  
George Artur Găman ◽  
Ionuț Drăgoi ◽  
Cătălina Ghiță

Global development of transportation dependent on internal combustion engines, involves major increases in the consumption of fossil fuels obtained by extracting crude oil from depths by means of wells and refining it. In this context, protection of environment and groundwater quality is an increasingly difficult objective to maintain, requiring modern methods to address possible negative effects on the environment. The current research assesses the degree of eco-toxicological and environmental risk for an oil exploitation area in case of an accidental pollution scenario with crude oil. The entire risk spectrum was analysed through a set of qualitative and quantitative risk assessment tools to highlight and quantify the most important effects caused by petroleum products on biotope and biocenoses. The primary aim of the research is to identify vulnerable environmental reservoirs for accidental oil pollution and to establish the best tools to quantify the environmental and ecotoxicological risk of groundwater contamination. The results obtained from the area showed a low to medium risk of contamination of the saturated and unsaturated area with crude oil expressed as TPH (total petroleum hydrocarbons) and a low risk of contamination with volatile organic compounds type BTEX associated contamination of biocenoses that can directly or indirectly interact with potentially polluted areas.


Cases of oil pollution have become a consistent decimal over the last twenty decades in most countries. The disagreement over who is liable for the massive oil pollution seen in some oil-producing countries worldwide has magnified tensions between significant stakeholders in those countries. This paper examines the rise in oil pollution in the Niger-Delta region of Nigeria and its framing by the print media through a quantitative content analysis method using news framing types developed by Semetko and Valkenburg (2000) among three Nigerian newspapers; The Daily Sun, The Guardian, and The Punch from 2014-2018. Specifically, the study findings show that The Daily Sun used more of the frames of responsibility (57.7%), economic consequences (63.3%), conflict (50.2%), and human interest (55.6%) in their oil pollution reports in the Niger-Delta. In contrast, The Guardian and The Punch used less of these frames, probably due to their laissez-faire attitude towards holding the oil companies accountable despite glaring evidence of environmental degradation.


Author(s):  
Paul A. Onuh ◽  
Tochukwu J. Omenma ◽  
Chinedu J. Onyishi ◽  
Celestine U. Udeogu ◽  
Nelson C. Nkalu ◽  
...  

While the activities of multinational oil corporations contribute significantly to oil pollution and environmental degradation in most oil-producing countries, the extent to which illegal artisanal refineries contribute to the environmental problems in Niger Delta remains unclear. Extant literature attributes this to the expanding activities of the artisans as well as the use of crude technology in illegal oil refining. Given the widespread nature of the artisanal oil-refining economy in the Niger Delta region, we assess its contribution to the growing environmental pollution in the region. By artisanal oil refining, we mean small-scale crude oil processing or subsistent distillation of petroleum that is often outside the boundaries of the state law. This study links the continual failure of the clean-up programme in the Niger Delta to the booming artisanal crude oil-refining economy in the region. Using predominantly qualitative methods of data collection and content analysis, we adopted the enterprise value chain analysis to underscore the underlying local economic interests and external economic opportunities that sustain oil bunkering, oil theft and petro-piracy. We conclude that these illegal refining processes significantly undermine the Ogoniland clean-up project and make the remediation programme unsustainable in Nigeria.


Author(s):  
V.I. Istomin ◽  
◽  
S.E. Tverskaya ◽  

Data on environmental monitoring and the marine environment pollution by oil are presented and new highly efficient technical means of oil-containing water purification systems are developed, which have high quality of oil-containing water purification, a long service life of filter elements, simple design and operation. The combined separation system for the purification of oily waters has a high efficiency and provides the purification of oily waters to a concentration of petroleum products lower than 5 million-1. The design of the regenerated filter and separator with granular loading ensures the regeneration of filter elements without disassembling and replacing them, which significantly simplifies the maintenance and operation of the system.


Resources ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Victor Pavlov ◽  
Victor Cesar Martins de Aguiar ◽  
Lars Robert Hole ◽  
Eva Pongrácz

Increasing exploration and exploitation activity in the Arctic Ocean has intensified maritime traffic in the Barents Sea. Due to the sparse population and insufficient oil spill response infrastructure on the extensive Barents Sea shoreline, it is necessary to address the possibility of offshore accidents and study hazards to the local environment and its resources. Simulations of surface oil spills were conducted in south-east of the Barents Sea to identify oil pollution trajectories. The objective of this research was to focus on one geographical location, which lies along popular maritime routes and also borders with sensitive ecological marine and terrestrial areas. As a sample of traditional heavy bunker oil, IFO-180LS (2014) was selected for the study of oil spills and used for the 30-year simulations. The second oil case was medium oil type: Volve (2006)—to give a broader picture for oil spill accident scenarios. Simulations for four annual seasons were run with the open source OpenDrift modelling tool using oceanographic and atmospheric data from the period of 1988–2018. The modelling produced a 30-year probability map, which was overlapped with environmental data of the area to discuss likely impacts to local marine ecosystems, applicable oil spill response tools and favourable shipping seasons. Based on available data regarding the environmental and socio-economic baselines of the studied region, we recommend to address potential threats to marine resources and local communities in more detail in a separate study.


Sign in / Sign up

Export Citation Format

Share Document