A study on harmonious chromatic number of total graph of central graph of generalized Petersen graph

Author(s):  
M. S. Franklin Thamil Selvi ◽  
A. Amutha
2021 ◽  
Vol 15 (4) ◽  
pp. 651-658
Author(s):  
Deddy Setyawan ◽  
Anis Nur Afni ◽  
Rafiantika Megahnia Prihandini ◽  
Ermita Rizki Albirri ◽  
Arika Indah Kristiana

The local antimagic total vertex labeling of graph G is a labeling that every vertices and edges label by natural number from 1 to  such that every two adjacent vertices has different weights, where is The sum of a vertex label and the labels of all edges that incident to the vertex. If the labeling start the smallest label from the vertex  then the edge  so that kind of coloring is called the local super antimagic total vertex labeling. That local super antimagic total vertex labeling induces vertex coloring of graph G where for vertex v, the weight  w(v) is the color of  v. The minimum number of colors that obtained by coloring that induces by local super antimagic total vertex labeling of G called the chromatic number of local super antimagic total vertex coloring of G, denoted by χlsat(G). In this paper, we consider the chromatic number of local super antimagic total vertex coloring of Generalized Petersen Graph P(n,k) for k=1, 2.


Author(s):  
Yuan Si ◽  
Ping Li ◽  
Yuzhi Xiao ◽  
Jinxia Liang

For a vertex set [Formula: see text] of [Formula: see text], we use [Formula: see text] to denote the maximum number of edge-disjoint Steiner trees of [Formula: see text] such that any two of such trees intersect in [Formula: see text]. The generalized [Formula: see text]-connectivity of [Formula: see text] is defined as [Formula: see text]. We get that for any generalized Petersen graph [Formula: see text] with [Formula: see text], [Formula: see text] when [Formula: see text]. We give the values of [Formula: see text] for Petersen graph [Formula: see text], where [Formula: see text], and the values of [Formula: see text] for generalized Petersen graph [Formula: see text], where [Formula: see text] and [Formula: see text].


2018 ◽  
Vol 5 (2) ◽  
pp. 11-15
Author(s):  
Aaresh R.R ◽  
Venkatachalam M ◽  
Deepa T

Dynamic coloring of a graph G is a proper coloring. The chromatic number of a graph G is the minimum k such that G has a dynamic coloring with k colors. In this paper we investigate the dynamic chromatic number for the Central graph, Middle graph, Total graph and Line graph of Web graph Wn denoted by C(Wn), M(Wn), T(Wn) and L(Wn) respectively.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tanveer Iqbal ◽  
Muhammad Naeem Azhar ◽  
Syed Ahtsham Ul Haq Bokhary

In this paper, a new concept k -size edge resolving set for a connected graph G in the context of resolvability of graphs is defined. Some properties and realizable results on k -size edge resolvability of graphs are studied. The existence of this new parameter in different graphs is investigated, and the k -size edge metric dimension of path, cycle, and complete bipartite graph is computed. It is shown that these families have unbounded k -size edge metric dimension. Furthermore, the k-size edge metric dimension of the graphs Pm □ Pn, Pm □ Cn for m, n ≥ 3 and the generalized Petersen graph is determined. It is shown that these families of graphs have constant k -size edge metric dimension.


2017 ◽  
Vol 91 (1) ◽  
pp. 169-184 ◽  
Author(s):  
Boštjan Brešar ◽  
Sandi Klavžar ◽  
Douglas F. Rall ◽  
Kirsti Wash

2017 ◽  
Vol 09 (06) ◽  
pp. 1750071
Author(s):  
Muhammad Naeem ◽  
Muhammad Kamran Siddiqui

Let [Formula: see text] be a graph. A total labeling [Formula: see text] is called totally irregular total [Formula: see text]-labeling of [Formula: see text] if every two distinct vertices [Formula: see text] and [Formula: see text] in [Formula: see text] satisfy [Formula: see text] and every two distinct edges [Formula: see text] and [Formula: see text] in [Formula: see text] satisfy [Formula: see text] where [Formula: see text] and [Formula: see text] The minimum [Formula: see text] for which a graph [Formula: see text] has a totally irregular total [Formula: see text]-labeling is called the total irregularity strength of [Formula: see text], denoted by [Formula: see text] In this paper, we determined the total irregularity strength of disjoint union of [Formula: see text] isomorphic copies of generalized Petersen graph.


Sign in / Sign up

Export Citation Format

Share Document