On cyclic decompositions of the complete graph into the bipartite generalized Petersen graph P(n,3)

2021 ◽  
Vol 344 (5) ◽  
pp. 112339
Author(s):  
Wannasiri Wannasit
Author(s):  
Yuan Si ◽  
Ping Li ◽  
Yuzhi Xiao ◽  
Jinxia Liang

For a vertex set [Formula: see text] of [Formula: see text], we use [Formula: see text] to denote the maximum number of edge-disjoint Steiner trees of [Formula: see text] such that any two of such trees intersect in [Formula: see text]. The generalized [Formula: see text]-connectivity of [Formula: see text] is defined as [Formula: see text]. We get that for any generalized Petersen graph [Formula: see text] with [Formula: see text], [Formula: see text] when [Formula: see text]. We give the values of [Formula: see text] for Petersen graph [Formula: see text], where [Formula: see text], and the values of [Formula: see text] for generalized Petersen graph [Formula: see text], where [Formula: see text] and [Formula: see text].


1999 ◽  
Vol 51 (5) ◽  
pp. 1035-1072
Author(s):  
R. A. Litherland

AbstractLet be a regular branched cover of a homology 3-sphere M with deck group and branch set a trivalent graph Γ; such a cover is determined by a coloring of the edges of Γ with elements of G. For each index-2 subgroup H of G, MH = /H is a double branched cover of M. Sakuma has proved that H1() is isomorphic, modulo 2-torsion, to ⊕HH1(MH), and has shown that H1() is determined up to isomorphism by ⊕HH1(MH) in certain cases; specifically, when d = 2 and the coloring is such that the branch set of each cover MH → M is connected, and when d = 3 and Γ is the complete graph K4. We prove this for a larger class of coverings: when d = 2, for any coloring of a connected graph; when d = 3 or 4, for an infinite class of colored graphs; and when d = 5, for a single coloring of the Petersen graph.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tanveer Iqbal ◽  
Muhammad Naeem Azhar ◽  
Syed Ahtsham Ul Haq Bokhary

In this paper, a new concept k -size edge resolving set for a connected graph G in the context of resolvability of graphs is defined. Some properties and realizable results on k -size edge resolvability of graphs are studied. The existence of this new parameter in different graphs is investigated, and the k -size edge metric dimension of path, cycle, and complete bipartite graph is computed. It is shown that these families have unbounded k -size edge metric dimension. Furthermore, the k-size edge metric dimension of the graphs Pm □ Pn, Pm □ Cn for m, n ≥ 3 and the generalized Petersen graph is determined. It is shown that these families of graphs have constant k -size edge metric dimension.


2017 ◽  
Vol 09 (06) ◽  
pp. 1750071
Author(s):  
Muhammad Naeem ◽  
Muhammad Kamran Siddiqui

Let [Formula: see text] be a graph. A total labeling [Formula: see text] is called totally irregular total [Formula: see text]-labeling of [Formula: see text] if every two distinct vertices [Formula: see text] and [Formula: see text] in [Formula: see text] satisfy [Formula: see text] and every two distinct edges [Formula: see text] and [Formula: see text] in [Formula: see text] satisfy [Formula: see text] where [Formula: see text] and [Formula: see text] The minimum [Formula: see text] for which a graph [Formula: see text] has a totally irregular total [Formula: see text]-labeling is called the total irregularity strength of [Formula: see text], denoted by [Formula: see text] In this paper, we determined the total irregularity strength of disjoint union of [Formula: see text] isomorphic copies of generalized Petersen graph.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ramy Shaheen ◽  
Ali Kassem

An eternal dominating set of a graph G is a set of guards distributed on the vertices of a dominating set so that each vertex can be occupied by one guard only. These guards can defend any infinite series of attacks; an attack is defended by moving one guard along an edge from its position to the attacked vertex. We consider the “all guards move” of the eternal dominating set problem, in which one guard has to move to the attacked vertex and all the remaining guards are allowed to move to an adjacent vertex or stay in their current positions after each attack in order to form a dominating set on the graph and at each step can be moved after each attack. The “all guards move model” is called the m -eternal domination model. The size of the smallest m -eternal dominating set is called the m -eternal domination number and is denoted by γ m ∞ G . In this paper, we find γ m ∞ P n , 1 and γ m ∞ P n , 3 for n ≡ 0   mod   4 . We also find upper bounds for γ m ∞ P n , 2 and γ m ∞ P n , 3 when n is arbitrary.


2016 ◽  
Vol 126 (3) ◽  
pp. 289-294 ◽  
Author(s):  
MEHDI ALAEIYAN ◽  
HAMED KARAMI

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1265
Author(s):  
Ming Chen ◽  
Lianying Miao ◽  
Shan Zhou

A strong edge coloring of a graph G is a proper edge coloring such that every color class is an induced matching. In 2018, Yang and Wu proposed a conjecture that every generalized Petersen graph P(n,k) with k≥4 and n>2k can be strong edge colored with (at most) seven colors. Although the generalized Petersen graph P(n,k) is a kind of special graph, the strong chromatic index of P(n,k) is still unknown. In this paper, we support the conjecture by showing that the strong chromatic index of every generalized Petersen graph P(n,k) with k≥4 and n>2k is at most 9.


Sign in / Sign up

Export Citation Format

Share Document