Patterns of Denitrification and Methanogenesis Rates from Vernal Pools in a Temperate Forest Driven by Seasonal, Microbial Functional Gene Abundances, and Soil Chemistry
Abstract Due to their relatively small sizes, temperate forest vernal pools are less studied than other wetlands, despite being potential biogeochemical hotspots in landscapes. We investigated spatial and temporal factors driving N2O and CH4 emission rates from vernal pools in a temperate forest. We determined higher N2O (3.66 ± 0.53 × 10−6, μg N2O/m2/h) and CH4 (2.10 ± 0.7 × 10−3, μg N2O/m2/h) rates in spring relative to fall (~50% and 77% lower for N2O and CH4 rates, respectively) and winter (~70% and 94% lower for N2O and CH4 rates, respectively). Soil organic matter, nitrate content and bacterial 16S rDNA, nirS, and norB gene abundances emerged as significant drivers of N2O rates, whereas, soil pH, organic matter content and mcrA abundance were significant drivers of CH4 rates. Denitrification gene abundances were negatively correlated with N2O rates, whereas mcrA abundance correlated positively with CH4 rates. Results suggest that CH4 rates may be directly coupled to methanogen abundance, whereas N2O rates may be directly impacted by a variety of abiotic variables and indirectly coupled to the abundance of potential denitrifier assemblages. Overall, additional studies examining these dynamics over extended periods are needed to provide more insights into their control.