scholarly journals Assessing the influence of construction and demolition waste materials on workability and mechanical properties of concrete using statistical analysis

Author(s):  
Bahareh Hadavand ◽  
Reza Imaninasab
Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Aleksei Obrosov ◽  
Sabine Weiß

AbstractNowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufacturing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron microscopy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model proved the superior behavior of modified coating was developed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pritish Gupta Quedou ◽  
Eric Wirquin ◽  
Chandradeo Bokhoree

Purpose The purpose of this paper is to investigate the potential use of construction and demolition waste materials (C&DWM) as an alternative for natural fine aggregates (NFA), in view to solve the disposal problems caused due to landfills. In addition, to evaluate its suitability as a sustainable material, mechanical and durability properties have been performed on different proportions of concrete blending and the results recorded were compared with the reference concrete values. Design/methodology/approach In this research, the NFA were replaced at the proportion of 25%, 50%, 75% and 100% of C&DWM with a constant slump range of 130 mm–150 mm. This parameter will assess the consistency of the fresh concrete during transportation process. The characteristics of the end product was evaluated through various tests conducted on hardened concrete samples, namely, compressive strength, flexural strength, depth of penetration of water under pressure, rapid chloride penetration test, carbonation test and ultrasonic pulse velocity (UPV) test. All results recorded were compared with the reference concrete values. Findings The results demonstrated that the use of C&DWM in concrete portrayed prospective characteristics that could eventually change the concept of sustainable concrete. It was noted that the compressive and flexural strength decreased with the addition of C&DWM, but nevertheless, a continuous increase in strength was observed with an increase in curing period. Moreover, the increase in rapid chloride penetration and decrease in UPV over time period suggested that the concrete structure has improved in terms of compactness, thus giving rise to a less permeable concrete. The mechanical tests showed little discrepancies in the final results when compared to reference concrete. Therefore, it is opined that C&DWM can be used effectively in concrete. Originality/value This study explores the possible utilisation of C&DWM as a suitable surrogative materials in concrete in a practical perspective, where the slump parameter will be kept constant throughout the experimental process. Moreover, research on this method is very limited and is yet to be elaborated in-depth. This approach will encourage the use of C&DWM in the construction sector and in the same time minimise the disposal problems caused due to in landfills.


2020 ◽  
Vol 70 (337) ◽  
pp. 210 ◽  
Author(s):  
R. L.S. Ferreira ◽  
M. A.S. Anjos ◽  
E. F. Ledesma ◽  
J. E.S. Pereira ◽  
A. K.C. Nóbrega

This study investigated the physical-mechanical effects of cement-lime mortars containing recycled aggregate of construction and demolition waste (CDW). The natural aggregate (NA) was replaced by volume at 25%, 50%, 75% and 100% by mixed recycled aggregate (MRA) obtained from the CDW crushing. Five types of mortars were prepared with a volumetric ratio of 1:1:6 (cement, lime and aggregate) and water/binder ratio based on the fixed consistency of 260 mm. The effects of MRA on fresh and hardened mortars’ properties were analyzed. The results were analyzed using a one-way ANOVA. MRA incorporation improved most of the physical-mechanical properties of mortars tested, except for hardened bulk density, water absorption and porosity. In the long-run, mechanical strengths significantly increased in all compositions, especially those with higher percentages of MRA. The results obtained showed that the use of MRA in masonry mortars is an alternative to reduce the generation of waste and consumption of natural resources.


2014 ◽  
Vol 634 ◽  
pp. 85-96 ◽  
Author(s):  
Jorge Brito ◽  
Rui Silva

The world’s demand for construction aggregates has been increasing over the last years, mainly due to the rapid economic growth of countries such as Brazil, China and India. Naturally, this growth stimulates the development of construction and demolition activities, thereby generating increasing amounts of waste. This paper presents a state-of-the-art review of the experimental research on the effect of incorporating aggregates of different types and shapes, sourced from construction and demolition waste. This review also covers studies on the incorporation of waste materials coming from industrial activities, emphasising those performed in the Instituto Superior Técnico, of the University of Lisbon, Portugal.


2021 ◽  
Author(s):  
◽  
Frances Monique Basobas

<p><b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b></p> <p>With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse.</p> <p>This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.</p>


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1518
Author(s):  
Antonio López-Uceda ◽  
Enrique Fernández-Ledesma ◽  
Lorenzo Salas-Morera ◽  
José Ramón Jiménez ◽  
David Suescum-Morales

Recycled aggregates (RA) from construction and demolition waste are an alternative to natural aggregates in the construction sector. They are usually classified according to their composition. The main constituent materials are separated into the following categories: unbound natural aggregates, ceramic particles, cementitious particles, bituminous materials, and other materials considered impurities, such as glass, plastic, wood, or gypsum. In this research, a large number of samples of RA were collected from three different recycling plants and their properties were studied. After that, 35 samples were selected randomly, and their RA constituents were separated under laboratory conditions. Cementitious particles were differentiated into two subcategories: masonry mortar and concrete particles. Subsequently, their physical–mechanical properties were measured. The statistical analysis carried out exhibited that the constituents had a statistically significant influence on the physical–mechanical properties studied. Specifically, masonry mortar particles had higher water absorption and worse mechanical properties than concrete and ceramic particles. Secondly, multiple regression models were performed to predict the physical–mechanical properties of RA from their composition since mean absolute percentage error (MAPE) ranged between 0.9% and 8.6%. The differentiation in the subcategories of concrete and masonry mortar particles in compositional testing is useful for predicting the physical–mechanical properties of RA.


Sign in / Sign up

Export Citation Format

Share Document