Real-time sorting system for the Construction and Demolition Waste materials

Author(s):  
Sabina Bosoc ◽  
George Suciu ◽  
Andrei Scheianu ◽  
Ioana Petre
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pritish Gupta Quedou ◽  
Eric Wirquin ◽  
Chandradeo Bokhoree

Purpose The purpose of this paper is to investigate the potential use of construction and demolition waste materials (C&DWM) as an alternative for natural fine aggregates (NFA), in view to solve the disposal problems caused due to landfills. In addition, to evaluate its suitability as a sustainable material, mechanical and durability properties have been performed on different proportions of concrete blending and the results recorded were compared with the reference concrete values. Design/methodology/approach In this research, the NFA were replaced at the proportion of 25%, 50%, 75% and 100% of C&DWM with a constant slump range of 130 mm–150 mm. This parameter will assess the consistency of the fresh concrete during transportation process. The characteristics of the end product was evaluated through various tests conducted on hardened concrete samples, namely, compressive strength, flexural strength, depth of penetration of water under pressure, rapid chloride penetration test, carbonation test and ultrasonic pulse velocity (UPV) test. All results recorded were compared with the reference concrete values. Findings The results demonstrated that the use of C&DWM in concrete portrayed prospective characteristics that could eventually change the concept of sustainable concrete. It was noted that the compressive and flexural strength decreased with the addition of C&DWM, but nevertheless, a continuous increase in strength was observed with an increase in curing period. Moreover, the increase in rapid chloride penetration and decrease in UPV over time period suggested that the concrete structure has improved in terms of compactness, thus giving rise to a less permeable concrete. The mechanical tests showed little discrepancies in the final results when compared to reference concrete. Therefore, it is opined that C&DWM can be used effectively in concrete. Originality/value This study explores the possible utilisation of C&DWM as a suitable surrogative materials in concrete in a practical perspective, where the slump parameter will be kept constant throughout the experimental process. Moreover, research on this method is very limited and is yet to be elaborated in-depth. This approach will encourage the use of C&DWM in the construction sector and in the same time minimise the disposal problems caused due to in landfills.


2014 ◽  
Vol 634 ◽  
pp. 85-96 ◽  
Author(s):  
Jorge Brito ◽  
Rui Silva

The world’s demand for construction aggregates has been increasing over the last years, mainly due to the rapid economic growth of countries such as Brazil, China and India. Naturally, this growth stimulates the development of construction and demolition activities, thereby generating increasing amounts of waste. This paper presents a state-of-the-art review of the experimental research on the effect of incorporating aggregates of different types and shapes, sourced from construction and demolition waste. This review also covers studies on the incorporation of waste materials coming from industrial activities, emphasising those performed in the Instituto Superior Técnico, of the University of Lisbon, Portugal.


2021 ◽  
Author(s):  
◽  
Frances Monique Basobas

<p><b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b></p> <p>With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse.</p> <p>This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.</p>


2021 ◽  
Vol 882 ◽  
pp. 221-227
Author(s):  
Arpan Ray ◽  
Radhikesh Prasad Nanda ◽  
Pronab Roy

Wastes arising from construction and demolition (C & D) constitute one of the major streams in many countries. In this paper experimental investigation was carried to see the feasibility of C& D waste as road aggregates. From the grading analysis it was observed that using C& D wastes, strength criteria is being satisfied and meet the specifications of MORTH which is then subjected to aggregate impact value (AIV) testing, CBR testing etc. The CBR value of C&D waste was found to be 43.46 which were well above the permissible value. A proposed three-layer system using soil layer, C & D waste layer and asphalt concrete layer is chosen to estimate rut depth using existing analytical model. From the analytical model rut depth is predicted to be 14.77 mm which is less then maximum allowable limits. Hence C& D waste materials can be used as alternate materials in road construction with economy and sustainability.


2021 ◽  
Vol 6 (3) ◽  
pp. 35
Author(s):  
Sergio Copetti Callai ◽  
Piergiorgio Tataranni ◽  
Cesare Sangiorgi

The use of waste materials in road construction is becoming widely spread due to economic and environmental needs. Construction and demolition waste materials and mining residues have been studied for a long time. However, the use of fine materials, mainly from mine tailing and mining residue, is still complex, as they can be used as inert materials into the mix or can become a reactive agent in geopolymer mixes. In the present paper, an experimental application of basalt powder is proposed in the geopolymerisation reaction to produce artificial aggregates. In order to understand the input and output variables’ interactions used in the mix design, a statistical method called Design of Experiments was applied. With this design approach, it was possible to optimize the mix design of the experimental geopolymer mortars. The study evaluated several mixes with respect to their workability, compressive strength, and success rate of aggregates production. Finally, a model for predicting compressive strength is proposed and evaluated.


2017 ◽  
pp. 665-674
Author(s):  
Hanna Modin ◽  
Helena Palm ◽  
Martijn Van Praagh ◽  
Kenneth M. Persson

Many Swedish landfills are currently applied with a final cover. To minimise costs and the use of natural resources, waste materials can be a suitable substitute in landfill covers. Depending on the wastes’ contents, their mobility and in which layer of the final cover they are used, they could potentially contribute to the emission potential of the landfill. In this study the impact on landfill leachate quality from the drainage water of a final cover is investigated. Part of a landfill and its cover, below the upper drainage layer, was simulated in lab scale: The simulated liner was constructed from a mixture of fibre and ash residues from paper pulp production and the foundation and gas drainage layer was simulated by bottom ash from a municipal solid waste incinerator. The waste below the liner was simulated by residues fromsorting of construction and demolition waste. The leachate from the simulated damaged landfill cover had elevated concentrations of many substances including metals, ions and organic matter. However, the simulated landfilled waste could sorb several of these. Ag, Cd, Cu, Hg, N, P, Pb and Sb were sorbed to such an extent that the effect from the cover leachate was unnoticeable. The only pollutants that passed through the waste unattenuated were As, K, Na, TOC, V and Zn. In a real landfill the sorption would be even better since the waste mass will be much larger compared to the cover. Despite elevated concentrations of potentially complex forming substances there was no evidence that the cover leachate enhanced the leaching of any contaminants from the waste. Altogether the results show that the use of the studied waste materials in landfill covers can only be expected to have a small effect on the concentration of contaminants in the leachate from the landfill.


Detritus ◽  
2020 ◽  
pp. 19-25
Author(s):  
Petri Jetsu ◽  
Markku Vilkki ◽  
Ismo Tiihonen

Wood and mineral wool fractions from demolished buildings were sorted into different categories and processed to the suitable grain size needed for the manufacturing of wood-plastic composites. Processed construction and demolition waste materials mixed with plastics and additives were extruded into hollow test bars using a conical rotary extruder. Test specimens needed for measurements were cut from test bars. The results showed that the mechanical performance of wood-plastic composites based on construction and demolition waste wood, and mineral wool was at a good level and comparable to commonly used wood-plastic composites in decking applications. The highest strength properties of wood-plastic composites were achieved with a plywood fraction and the lowest with materials containing a particle/fibre board fraction. The mechanical performance can be improved by utilizing mineral wool in the formulation of wood-plastic composites. A material mixture containing several wood fractions as well as mineral wool also gave good strength properties. Only a minor reduction in strength properties was measured when recycled plastic was utilized meaning that wood-plastic composites suitable for many types of applications can be produced entirely from recycled materials.


Sign in / Sign up

Export Citation Format

Share Document