scholarly journals Aerodynamic design, analysis, and validation techniques for the Tianwen-1 entry module

Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 39-52
Author(s):  
Qi Li ◽  
Wei Rao ◽  
Xiaoli Cheng ◽  
Haogong Wei ◽  
Chuang Wang ◽  
...  

AbstractThe clear differences between the atmosphere of Mars and the Earth coupled with the lack of a domestic research basis were significant challenges for the aerodynamic prediction and verification of Tianwen-1. In addition, the Mars entry, descent, and landing (EDL) mission led to specific requirements for the accuracy of the aerodynamic deceleration performance, stability, aerothermal heating, and various complex aerodynamic coupling problems of the entry module. This study analyzes the key and difficult aerodynamic and aerothermodynamic problems related to the Mars EDL process. Then, the study process and results of the design and optimization of the entry module configuration are presented along with the calculations and experiments used to obtain the aerodynamic and aerothermodynamic characteristics in the Martian atmosphere. In addition, the simulation and verification of the low-frequency free oscillation characteristics under a large separation flow are described, and some special aerodynamic coupling problems such as the aeroelastic buffeting response of the trim tab are discussed. Finally, the atmospheric parameters and aerodynamic characteristics obtained from the flight data of the Tianwen-1 entry module are compared with the design data. The data obtained from the aerodynamic design, analysis, and verification of the Tianwen-1 entry module all meet the engineering requirements. In particular, the flight data results for the atmospheric parameters, trim angles of attack, and trim axial forces are within the envelopes of the prediction deviation zones.

2021 ◽  
Vol 263 (6) ◽  
pp. 152-163
Author(s):  
Remi Roncen ◽  
Pierre Vuillemin ◽  
Patricia Klotz ◽  
Frank Simon ◽  
Fabien Méry ◽  
...  

In the context of noise reduction in diverse applications where a shear grazing flow is present (i.e., engine nacelle, jet pump, landing gear), improved acoustic liner solutions are being sought. This is particularly true in the low-frequency regime, where space constraints currently limit the efficiency of classic liner technology. To perform the required multi-objective optimization of complex meta-surface liner candidates, a software platform called OPAL was developed. Its first goal is to allow the user to assemble a large panel of parallel/serial assembly of unit acoustic elements, including the recent concept of LEONAR materials. Then, the physical properties of this liner can be optimized, relatively to given weighted objectives (noise reduction, total size of the sample, weight), for a given configuration. Alternatively, properties such as the different impedances of liner unit surfaces can be optimized. To accelerate the process, different nested levels of optimization are considered, from 0D analytical coarse designs in order to reduce the parameter space, up to 2D plan or axisymmetric high-order Discontinuous Galerkin resolution of the Linearized Euler Equations. The presentation will focus on the different aspects of liner design considered in OPAL, and present an application on different samples made for a small scale aeroacoustic bench.


Author(s):  
Marcin Figat ◽  
Agnieszka Kwiek

This paper presents the results of a numerical study of the aerodynamic shape of the Rocket Plane LEX. The Rocket Plane is a main part of the Modular Airplane System – MAS; a special vehicle devoted to suborbital tourist flights. The Rocket Plane was designed for subsonic and supersonic flight conditions. Therefore, the impact of the Mach number should be considered during the aerodynamic design of the Rocket Plane. The main goal of the investigation was to determine the sensitivity of the Rocket Plane aerodynamic characteristics to the Mach number during the optimisation of the LEX geometry. The paper includes results of the optimisation process for Mach number from the range Ma = 0.5 to Ma = 2.5. These results reveal that the aerodynamic characteristics of models optimised for the subsonic and transonic regime of Mach numbers (up to Ma = 1) were also improved for the supersonic speed regime. However, in the case of models optimised for the supersonic flight regime the aerodynamic characteristics in subsonic flight regime, are inferior compared to the model before the optimisation process.


2010 ◽  
Vol 6 (S274) ◽  
pp. 268-273
Author(s):  
N. Mandolesi ◽  
C. Burigana ◽  
A. Gruppuso ◽  
P. Procopio ◽  
S. Ricciardi

AbstractThis paper provides an overview of the ESA Planck mission and its scientific promises. Planck is equipped with a 1.5–m effective aperture telescope with two actively-cooled instruments observing the sky in nine frequency channels from 30 GHz to 857 GHz: the Low Frequency Instrument (LFI) operating at 20 K with pseudo-correlation radiometers, and the High Frequency Instrument (HFI) with bolometers operating at 100 mK. After the successful launch in May 2009, Planck has already mapped the sky twice (at the time of writing this review) with the expected behavior and it is planned to complete at least two further all-sky surveys. The first scientific results, consisting of an Early Release Compact Source Catalog (ERCSC) and in about twenty papers on instrument performance in flight, data analysis pipeline, and main astrophysical results, will be released on January 2011. The first publications of the main cosmological implications are expected in 2012.


Author(s):  
Cláudio Tavares da Silva ◽  
Ana Paula Carvalho da Silva Ferreira ◽  
Augusto Bemben Costa ◽  
Lucas Gonçalves Araujo

2020 ◽  
Author(s):  
Jianxiao Li ◽  
Difei Liang ◽  
Weijia Li ◽  
Yun Wang ◽  
Qian Liu

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 604 ◽  
Author(s):  
Paht Juangphanich ◽  
Cis De Maesschalck ◽  
Guillermo Paniagua

Rapid aerodynamic design and optimization is essential for the development of future turbomachinery. The objective of this work is to demonstrate a methodology from 1D mean-line-design to a full 3D aerodynamic optimization of the turbine stage using a parameterization strategy that requires few parameters. The methodology is tested by designing a highly loaded and efficient turbine for the Purdue Experimental Turbine Aerothermal Laboratory. This manuscript describes the entire design process including the 2D/3D parameterization strategy in detail. The objective of the design is to maximize the entropy definition of efficiency while simultaneously maximizing the stage loading. Optimal design trends are highlighted for both the stator and rotor for several turbine characteristics in terms of pitch-to-chord ratio as well as the blades metal and stagger angles. Additionally, a correction term is proposed for the Horlock efficiency equation to maximize the accuracy based on the measured blade kinetic losses. Finally, the design and performance of optimal profiles along the Pareto front are summarized, featuring the highest aerodynamic performance and stage loading.


Author(s):  
V.T. Kalugin ◽  
A.Y. Lutsenko ◽  
D.M. Slobodyanyuk

This work considers the aerodynamic characteristics of the reentry vehicle (RV) of a segmental-conical shape, and the parachute container hatch cover (PCHC) during its separation. Due to the aerodynamic interference, the hatch may collide with the RV. The authors propose a method of studying the aerodynamic characteristics of the PCHC and RV based on modelling using the dynamic mesh technology in the FlowVision software package. Stationary flow around the RV until the hatch cover separation, flow around the hatch cover and free flow are calculated. As the result of the calculations, the PCHC trajectories (excluding gravitational forces) under various initial separation conditions, as well as the aerodynamic characteristics of the RV are obtained. The cases when the hatch cover collides with the RV are identified.


Sign in / Sign up

Export Citation Format

Share Document