scholarly journals Concentration estimates for finite expansions of spherical harmonics on two-point homogeneous spaces via the large sieve principle

Author(s):  
Philippe Jaming ◽  
Michael Speckbacher
1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


1992 ◽  
Vol 2 (5) ◽  
pp. 1081-1108 ◽  
Author(s):  
V. Heinrich ◽  
M. Brumen ◽  
R. Heinrich ◽  
S. Svetina ◽  
B. Žekš

1969 ◽  
Vol 21 (3) ◽  
pp. 343-353 ◽  
Author(s):  
S. Ramanujan

2021 ◽  
Vol 177 ◽  
pp. 107900
Author(s):  
Zhigang Chu ◽  
Yongxin Yang ◽  
Yang Yang
Keyword(s):  

Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


Sign in / Sign up

Export Citation Format

Share Document