TAME stabilizes the cortex and mitotic apparatus of the sea urchin egg during isolation

1986 ◽  
Vol 162 (2) ◽  
pp. 495-506 ◽  
Author(s):  
R.E. Kane
1958 ◽  
Vol 35 (2) ◽  
pp. 407-424
Author(s):  
Y. HIRAMOTO

1. Protoplasmic movements during cleavage in the eggs of the heart-urchin Clypeaster japonicus have been followed by tracing the movements of cytoplasmic granules and of carbon particles adhering to the surface. 2. These movements are quantitatively described in normal eggs and in eggs whose mitotic apparatus has been destroyed by colchicine. 3. The results obtained are qualitatively similar to those obtained by Spek and by Dan and his collaborators. 4. Endoplasmic movement and changes in the length and shape of the astral rays are readily explained by the contracting-ring (band) theory. 5. The location of the motive force of cell division is discussed.


1972 ◽  
Vol 70 (2) ◽  
pp. 325-332 ◽  
Author(s):  
D. Mazia ◽  
Chr. Petzelt ◽  
R.O. Williams ◽  
I. Meza

1981 ◽  
Vol 89 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Y Hiramoto ◽  
Y Hamaguchi ◽  
Y Shóji ◽  
T E Schroeder ◽  
S Shimoda ◽  
...  

Birefringence of the mitotic apparatus (MA) and its change during mitosis in sea urchin eggs were quantitatively determined using the birefringence detection apparatus reported in the preceding paper (Hiramoto el al., 1981, J. Cell Biol. 89:115-120). The birefringence and the form of the MA are represented by five parameters: peak retardation (delta p), through retardation (delta t), interpolar distance (D1), the distance (D2) between chromosome groups moving toward poles, and the distance (D3) between two retardation peaks. Distributions of birefringence retardation and the coefficient of birefringence in the spindle were quantitatively determined in MAs isolated during metaphase and anaphase. The distribution of microtubules (MTs) contained in the spindle is attributable to the form birefringence caused by regularly arranged MTs. The distribution coincided fairly well with the distribution of MTs in isolated MAs determined by electron microscopy. Under the same assumption, the distribution of MTS in the spindle in living cells during mitosis was determined. The results show that the distribution of MTs and the total amount of polymerized tubulin (MTs) in the spindle change during mitosis, suggesting the assembly and disassembly of MTs as well as the dislocation of MTs during mitosis.


1962 ◽  
Vol 15 (2) ◽  
pp. 279-287 ◽  
Author(s):  
R. E. Kane

The fine structure of the mitotic apparatus isolated from the sea urchin egg has been investigated. The isolation was accomplished by lysis of metaphase eggs in a 1 M solution of hexanediol, buffered at pH 6. The fine structure of the isolated apparatus was studied after fixation with osmium tetroxide directly in the isolation medium. The spindle is composed of fine fibrils, approximately 20 mµ in diameter, which appear tubular. Similar fibrils, radially oriented, are found in the aster. If the isolated mitotic apparatus is exposed to water at pH 6 before fixation, the structure is considerably modified. The most pronounced effects are an increase in the number of large membrane-bounded vesicles and in the amount of free granular material present. The conditions necessary for the fixation of the mitotic apparatus in dividing cells are discussed in the light of these observations on the isolated unit.


1984 ◽  
Vol 98 (5) ◽  
pp. 1842-1850 ◽  
Author(s):  
G Piperno

Monoclonal antibodies directed against subunits of a sea urchin flagellar dynein were used to test for the presence of cytoplasmic antigens in preparations of fertilized eggs and mitotic apparati . A 9-10 S complex composed of 330,000-, 134,000-, and 126,000-mol-wt subunits was isolated from outer arms of Strongylocentrotus purpuratus sperm flagella and used to characterize the antibodies. Seven monospecific antibodies to the 330,000 subunit and two against the 134,000 subunit of the 9-10 S complex were identified by binding to nitrocellulose blots of electrophoretograms resolving polypeptides from different dynein preparations. The antibodies were applied also to blots of polypeptides from fertilized sea urchin egg at the first metaphase and a cellular fraction of mitotic apparati . Three of the antibodies to the 330,000 subunit bound to a cytoplasmic polypeptide of approximately the same molecular weight and the two antibodies to the smaller subunits recognized a polypeptide of 124,000 apparent molecular weight. Both antigens appeared to be enriched in the fraction containing mitotic apparati . These results indicate that polypeptides similar to two subunits of the 9-10 S complex are present in eggs at metaphase, and they are apparently associated with the mitotic apparatus.


1987 ◽  
Vol 7 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Shin-Ichi Hisanaga ◽  
Takeshi Tanaka ◽  
Tomoh Masaki ◽  
Hikoichi Sakai ◽  
Issei Mabuchi ◽  
...  

2000 ◽  
Vol 346 (3) ◽  
pp. 743-749 ◽  
Author(s):  
Keith T. JONES ◽  
Miho MATSUDA ◽  
John PARRINGTON ◽  
Matilda KATAN ◽  
Karl SWANN

A soluble phospholipase C (PLC) from boar sperm generates InsP3 and hence causes Ca2+ release when added to sea urchin egg homogenate. This PLC activity is associated with the ability of sperm extracts to cause Ca2+ oscillations in mammalian eggs following fractionation. A sperm PLC may, therefore, be responsible for causing the observed Ca2+ oscillations at fertilization. In the present study we have further characterized this boar sperm PLC activity using sea urchin egg homogenate. Consistent with a sperm PLC acting on egg PtdIns(4,5)P2, the ability of sperm extracts to release Ca2+ was blocked by preincubation with the PLC inhibitor U73122 or by the addition of neomycin to the homogenate. The Ca2+-releasing activity was also detectable in sperm from other species and in whole testis extracts. However, activity was not observed in extracts from other tissues. Moreover recombinant PLCβ1, -γ1, -γ2, -∆1, all of which had higher specific activities than boar sperm extracts, were not able to release Ca2+ in the sea urchin egg homogenate. In addition these PLCs were not able to cause Ca2+ oscillations following microinjection into mouse eggs. These results imply that the sperm PLC possesses distinct properties that allow it to hydrolyse PtdIns(4,5)P2 in eggs.


Sign in / Sign up

Export Citation Format

Share Document