Stress intensity factors due to non-elastic strains and body forces for steady dynamic crack extension in an anisotropic elastic material

1988 ◽  
Vol 24 (8) ◽  
pp. 805-815 ◽  
Author(s):  
Wu Kuang-Chong
2020 ◽  
Vol 73 (1) ◽  
pp. 76-83
Author(s):  
Xu Wang ◽  
Peter Schiavone

Summary We use the sextic Stroh formalism to study the asymptotic elastic field near the tip of a debonded anticrack in a generally anisotropic elastic material under generalised plane strain deformations. The stresses near the tip of the debonded anticrack exhibit the oscillatory singularities $r^{-3/4\pm i\varepsilon }$ and $r^{-1/4\pm i\varepsilon }$ (where $\varepsilon $ is the oscillatory index) as well as the real power-type singularities $r^{-3/4}$ and $r^{-1/4}$. Two complex-valued stress intensity factors and two real-valued stress intensity factors are introduced to respectively scale the two oscillatory and two real power-type singularities. The corresponding three-dimensional analytic vector function is derived explicitly, and the material force on the debonded anticrack is obtained. Our solution is illustrated using an example involving orthotropic materials.


1999 ◽  
Author(s):  
Wan-Lee Yin

Abstract Multi-material wedges composed of fully anisotropic elastic sectors generally show intrinsic coupling of the anti-plane and in-plane modes of deformation. Each anisotropic sector has three complex conjugate pairs of material eigensolutions whose form of expression depends on five distinct types of anisotropic materials. Continuity of the displacements and the tractions across the sector interfaces and the traction-free conditions on two exterior boundary edges determine an infinite sequence of eigenvalues and eigensolutions of the multi-material wedge. These eigensolutions are linearly combined to match the traction-boundary data (generated by global finite element analysis of the structure) on a circular path encircling the singularity. The analysis method is applied to a bimaterial wedge near the free edge of a four-layer angle-ply laminate, and to a trimaterial wedge surrounding the tip of an embedded oblique crack in a three-layer composite. Under a uniform temperature load, the elasticity solution based on the eigenseries yields interfacial stresses that are significantly different from the asymptotic solution (given by the first term of the eigenseries), even as the distance from the singularity decreases to subatomic scales. Similar observations have been found previously for isotropic and orthotropic multi-material wedges. This raises serious questions with regard to characterizing the criticality of stress singularity exclusively in terms of the asymptotic solution and the associated stress intensity factors or generalized stress intensity factors.


Author(s):  
Mayumi Ochi ◽  
Kiminobu Hojo ◽  
Itaru Muroya ◽  
Kazuo Ogawa

Alloy 600 weld joints have potential for primary water stress corrosion cracks (PWSCC). At the present time it has been understood that PWSCC generates and propagates in the Alloy 600 base metal and the Alloy 600 weld metal and there has been no observation of cracking the stainless and the low alloy steel. For the life time evaluation of the pipes or components the crack extension analysis is required. To perform the axial crack extension analysis the stress intensity database or estimation equation corresponding to the extension crack shape is needed. From the PWSCC extension nature mentioned above, stress intensity factors of the conventional handbooks are not suitable because most of them assume a semi-elliptical crack and the maximum aspect ratio crack depth/crack half length is one (The evaluation in this paper had been performed before API 579-1/ASME FFS was published). Normally, with the advance of crack extension in the thickness direction at the weld joint, the crack aspect ratio exceeds one and the K-value of the conventional handbook can not be applied. Even if those equations are applied, the result would be overestimated. In this paper, considering characteristics of PWSCC’s extension behavior in the welding material, the axial crack was modeled in the FE model as a rectangular shape and the stress intensity factors at the deepest point were calculated with change of crack depth. From the database of the stress intensity factors, the simplified equation of stress intensity factor with parameter of radius/thickness and thickness/weld width was proposed.


2005 ◽  
Vol 72 (3) ◽  
pp. 330-340 ◽  
Author(s):  
Xiangqiao Yan

Based on the analytical solution of Crouch to the problem of a constant discontinuity in displacement over a finite line segment in an infinite elastic solid, in the present paper, the crack-tip displacement discontinuity elements, which can be classified as the left and the right crack-tip elements, are presented to model the singularity of stress near a crack tip. Furthermore, the crack-tip elements together with the constant displacement discontinuity elements presented by Crouch and Starfied are used to develop a numerical approach for calculating the stress intensity factors (SIFs) of general plane cracks. In the boundary element implementation, the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called the hybrid displacement discontinuity method (HDDM). Numerical examples are given and compared with the available solutions. It can be found that the numerical approach is simple, yet very accurate for calculating the SIFs of branched cracks. As a new example, cracks emanating from a rhombus hole in an infinite plate under biaxial loads are taken into consideration. The numerical results indicate the efficiency of the present numerical approach and can reveal the effect of the biaxial load on the SIFs. In addition, the hybrid displacement discontinuity method together with the maximum circumferential stress criterion (Erdogan and Sih) becomes a very effective numerical approach for simulating the fatigue crack propagation process in plane elastic bodies under mixed-mode conditions. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the HDDM. Crack propagation is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented.


Sign in / Sign up

Export Citation Format

Share Document