free edge
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 129)

H-INDEX

46
(FIVE YEARS 4)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Salman Khalid ◽  
Jaehun Lee ◽  
Heung Soo Kim

This paper introduces a new loading condition considering the combined thermo-electro-mechanical coupling effect in a series solution-based approach to analyze the free-edge interlaminar stresses in smart composite laminates. The governing equations are developed using the principle of complementary virtual work. The assumed stress fields satisfy the traction-free and free-edge boundary conditions. The accurate stress states of the composite structures are acquired through the procedure of generalized eigenvalue problems. The uniform temperature is employed throughout the laminate, and the electric field loading is applied to the symmetric piezo-bonded actuators to examine the combined effect of thermal and electrical stresses on the overall deformation of smart composite laminates. It was observed that the magnitude of the peeling stresses generated by mechanical loading was reduced by the combined thermal and electric excitation loading (up to 25.3%), which in turn resulted in expanding the service life of the smart composite structures. The proposed approach is implemented on three different layup configurations. The efficiency of the current methodology is confirmed by comparing the results with the 3D finite element (FEM) solution computed by ABAQUS.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4201
Author(s):  
Vincenzo Fiore ◽  
Luigi Calabrese

The aim of the present paper is to evaluate the effect of the hybridization with external layers of glass fibers on the durability of flax fiber reinforced composites in severe aging conditions. To this scope, full glass, full flax and hybrid glass–flax pinned laminates were exposed to a salt-fog environment for up to 60 days. Double-lap pinned joint tests were performed to assess the pin-hole joints performances at varying the laminate stacking sequence. In order to better discriminate the relationship between the mechanical behavior and the fracture mechanisms of joints at increasing the aging time, different geometries (i.e., by varying both the hole diameter D and the free edge distance from the center of the hole E) were investigated after 0 (i.e., unaged samples), 30 and 60 days of salt-fog exposition. It was shown that the hybridization positively affects the mechanical performance as well as the stability of pinned composites: i.e., improvements in both strength and durability against the salt-fog environment were evidenced. Indeed, the hybrid laminate exhibited a reduction in the bearing strength of about 20% after 60 days of aging, despite to full flax laminate, for which a total reduction in the bearing strength of 29% was observed. Finally, a simplified joint failure map was assessed, which clusters the main failure mechanisms observed for pinned composites at varying aging conditions, thus assisting the joining design of flax–glass hybrid laminates.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Harshad Patel

Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems


Author(s):  
I Ketut Sudarsana ◽  
I Gede Gegiranang Wiryadi ◽  
I Gede Adi Susila

The unbalance moments at the edge connections of flat plate structures induced by lateral forces (i.e. an earthquake) may not always act in parallel directions of the building axes. Most research studied the unbalanced moments in one direction, a few of them in biaxial directions, and none of them in incline directions. This paper presents the results of a nonlinear finite element analysis on punching shear capacity at edge column-slab connections subjected to three directions of the unbalanced moments namely perpendicular, incline 45°, and parallel to the slab free edge in combination with the shear force. A 3-D numerical analysis of ten isolated edge column-plate connections was conducted by applying an appropriate element size, mesh, and calibrated material parameters of the concrete damage plasticity (CDP) model in ABAQUS. the connections were subjected to ten variations of the moment to shear (M/V) ratios. The results show that the punching shear capacity decreases exponentially for the unbalanced moment acting perpendicular and parallel to the slab free edge, and linearly for unbalanced moment incline 45° as the increase in M/V ratio. The M-V interaction at the edge connections depends on the unbalanced moment directions which are slightly different from the ACI 318 code.


2021 ◽  
Vol 8 (3) ◽  
pp. 226-229
Author(s):  
Chandragirish S ◽  
Harsha B R ◽  
Girish V Patil

Aim of the present study was to observe the types of chordae tendinae present in tricuspid valve of human heart. Morphology of chordae tendinae in tricuspid valve gains utmost importance in cardiac surgeries in recent times because advent in modern technologies in treatment of tricuspid valve diseases.This study was carried out on 96 normal formalin fixed human post-mortem heart specimens. Types of chordae tendinae observed on the basis of their attachments.Chordae tendinae were observed in all specimens. Five types of chordae tendinae were identified namely rough zone, free edge, fan shaped, deep and basal chordae. Anterior papillary muscle was seen providing attachment to 2 to 9; Posterior papillary muscles were seen with 1 to 6 and Septal papillary muscles provided attachment to 1 to 4 chordae tendinae.We hope this study will serve to understand the tricuspid valve complex and types of different chordae tendinae better and it will help in various surgical procedures done on tricuspid valve.


Sign in / Sign up

Export Citation Format

Share Document