On the theory of pulse propagation in curved beams

1972 ◽  
Vol 24 (2) ◽  
pp. 247-258 ◽  
Author(s):  
J.W. Phillips ◽  
F.B. Crowley
1974 ◽  
Vol 41 (1) ◽  
pp. 71-76 ◽  
Author(s):  
F. B. Crowley ◽  
J. W. Phillips ◽  
C. E. Taylor

The equations from Morley’s one-dimensional theory governing the motion of a curved beam subjected to an arbitrary pulse are solved numerically using the method of characteristics. Propagation of initially longitudinal pulses in beam assemblages with both straight and curved sections is investigated. Simulated isochromatic fringe patterns are constructed by a Calcomp plotter and are compared with actual photoelastic patterns. Remarkably good agreement is found between theory and experiment in all the cases investigated. It is concluded that Morley’s theory can be applied to pulse propagation problems of the type investigated.


PIERS Online ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 177-181
Author(s):  
V. Grimalsky ◽  
Svetlana Koshevaya ◽  
Javier Sanchez-Mondragon ◽  
Margarita Tecpoyotl Torres ◽  
J. Escobedo Alatorre

2011 ◽  
Author(s):  
George W. Kattawar ◽  
Alexei V. Sokolov

Sign in / Sign up

Export Citation Format

Share Document