The effective mechanical properties of nonlinear isotropic composites

1991 ◽  
Vol 39 (1) ◽  
pp. 45-71 ◽  
Author(s):  
P.Ponte Castañeda
Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2421 ◽  
Author(s):  
Angelos Filippatos ◽  
Maik Gude

Fibre-reinforced composite structures subjected to complex loads exhibit gradual damage behaviour with the degradation of the effective mechanical properties and changes in their structural dynamic behaviour. Damage manifests itself as a spatial increase in inter-fibre failure and delamination growth, resulting in local changes in stiffness. These changes affect not only the residual strength but, more importantly, the structural dynamic behaviour. In the case of composite rotors, this can lead to catastrophic failure if an eigenfrequency coincides with the rotational speed. The description and analysis of the gradual damage behaviour of composite rotors, therefore, provide the fundamentals for a better understanding of unpredicted structural phenomena. The gradual damage behaviour of the example composite rotors and the resulting damage-dependent dynamic behaviour were experimentally investigated under propagating damage caused by a combination of out-of-plane and in-plane loads. A novel observation is the finding that a monotonic increase in damage results in a non-monotonic frequency shift of a significant number of eigenfrequencies.


2020 ◽  
Vol 4 (4) ◽  
pp. 179
Author(s):  
Vivek Kumar Dhimole ◽  
Yanqin Chen ◽  
Chongdu Cho

The mechanical properties of the material are essential to identify the material behavior of the structure. Predicting four-directional braided composites’ mechanical properties based on accurate modeling is an essential issue among researchers. In this research, the principle of minimum energy loss-based mechanics of structure genome was used for the two-step homogenization of three-dimensional (3D) four-directional braided composites. In the first step homogenization, the micro-scale model’s effective mechanical properties were decided by considering fibers and matrix; in the second step homogenization, the final effective mechanical properties of the meso-scale model were obtained by considering yarns and matrix. TexGen python script was implemented for accurate modeling of 3D four-directional braided cells with jamming effects. The current process sustainability was validated for 3D four-directional braided polymer matrix composites (PMCs) material by available finite element analysis (FEA) and experimental literature. The method is further extended for 3D four-directional braided ceramic matrix composites (CMCs) to confirm its versatility for standard composites. A commercial FEA was also performed on the meso-scale braided cell to validate the two-step homogenization results. This research explored fast and more accurate modeling and analysis techniques for 3D four-directional braided composites.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
David P. Fyhrie ◽  
Roger Zauel

There are many methods used to estimate the undamaged effective (apparent) moduli of cancellous bone as a function of bone volume fraction (BV/TV), mean intercept length (MIL), and other image based average microstructural measures. The MIL and BV/TV are both only functions of the cancellous microstructure and, therefore, cannot directly account for damage induced changes in the intrinsic trabecular hard tissue mechanical properties. Using a nonlinear finite element (FE) approximation for the degradation of effective modulus as a function of applied effective compressive strain, we demonstrate that a measurement of the directional tortuosity of undamaged trabecular hard tissue strongly predicts directional effective modulus (r2 > 0.90) and directional effective modulus degradation (r2 > 0.65). This novel measure of cancellous bone directional tortuosity has the potential for development into an anisotropic approach for calculating effective mechanical properties as a function of trabecular level material damage applicable to understanding how tissue microstructure and intrinsic hard tissue moduli interact to determine cancellous bone quality.


Author(s):  
H. R. Pasaribu ◽  
D. J. Schipper

The effective mechanical properties of a layered surface vary as a function of indentation depth and the values of these properties range between the value of the layer itself and of the substrate. In this paper, a layered surface is modelled like a solid that has effective mechanical properties as a function of indentation depth by assuming that the layer is perfectly bounded to the substrate. The normal load as a function of indentation depth of sphere pressed against a flat layered surface is calculated using this model and is in agreement with the experimental results published by El-Sherbiney (1975), El-Shafei et al. (1983), Tang & Arnell (1999) and Michler & Blank (2001). A deterministic contact model of a rough surface against a flat layered surface is developed by representing a rough surface as an array of spherically shaped asperities with different radii and heights (not necessarily Gaussian distributed). Once the data of radius and height of every single asperity is obtained, one can calculate the number of asperities in contact, the real contact area and the load carried by the asperities as a function of the separation.


2011 ◽  
Vol 383-390 ◽  
pp. 931-934
Author(s):  
Chun Li ◽  
Lei Chen ◽  
Li Qiao

The purpose of this paper is to evaluate the effective mechanical properties of composite ceramic with randomly distributed multi-phase inclusions. The RVE finite element subcell technique based on numerical homogenization theory is used to separate the multi-phase composite into the layered unit cell models which are generated by a modified random sequential adsorption algorithm (RSA). The numerical results are also compared and verified with experiment data.


Sign in / Sign up

Export Citation Format

Share Document