scholarly journals Modeling and Two-Step Homogenization of Aperiodic Heterogenous 3D Four-Directional Braided Composites

2020 ◽  
Vol 4 (4) ◽  
pp. 179
Author(s):  
Vivek Kumar Dhimole ◽  
Yanqin Chen ◽  
Chongdu Cho

The mechanical properties of the material are essential to identify the material behavior of the structure. Predicting four-directional braided composites’ mechanical properties based on accurate modeling is an essential issue among researchers. In this research, the principle of minimum energy loss-based mechanics of structure genome was used for the two-step homogenization of three-dimensional (3D) four-directional braided composites. In the first step homogenization, the micro-scale model’s effective mechanical properties were decided by considering fibers and matrix; in the second step homogenization, the final effective mechanical properties of the meso-scale model were obtained by considering yarns and matrix. TexGen python script was implemented for accurate modeling of 3D four-directional braided cells with jamming effects. The current process sustainability was validated for 3D four-directional braided polymer matrix composites (PMCs) material by available finite element analysis (FEA) and experimental literature. The method is further extended for 3D four-directional braided ceramic matrix composites (CMCs) to confirm its versatility for standard composites. A commercial FEA was also performed on the meso-scale braided cell to validate the two-step homogenization results. This research explored fast and more accurate modeling and analysis techniques for 3D four-directional braided composites.

Author(s):  
Michael G. Jenkins ◽  
Paul E. Labossie`re ◽  
Jonathan A. Salem

Ceramic matrix composites (CMCs) have evolved to exhibit inherent damage tolerance through nonlinear energy absorption mechanisms while retaining the desirable attributes of their monolithic structural ceramic counterparts. Mathematical (analytic and numeric) models together with experimental measurements of this damage absorption have aided in understanding the thermomechanical behavior of CMCs. This understanding has led to improved test methods, better predictive modeling of material behavior, appropriate processing methods, and finally novel design methodologies for implementing CMCs. In this paper, background on CMC damage is presented, damage measurement and damage models are discussed and finally probabilistic aspects of constituent materials that can be used to illustrate the cumulative damage behavior of CMCs are described.


In this paper, SiCp /Al2O3 composites were fabricated through directed metal oxidation process. Experimental results of these composites validated or compared with Finite Element Method (FEM). Finite Element has become one in all the foremost necessary tools offered to an engineer. The finite part methodology is employed to resolve advanced analysis issues. In this paper, Finite Element Method based ANSYS software is used to FEM model to determine mechanical properties of SiC reinforced Al2O3 matrix composite by changing volume fractions of SiC. The comparison of experimental results with Finite element analysis provides detailed information about the results of these comparisons. The FA was competent of predict the information for several scenario quite fine


Sign in / Sign up

Export Citation Format

Share Document