scholarly journals A Gersgorin-type lower bound for the smallest singular value

1989 ◽  
Vol 112 ◽  
pp. 1-7 ◽  
Author(s):  
Charles R. Johnson
2008 ◽  
Vol 17 ◽  
Author(s):  
Wei Zhang ◽  
Zheng-Zhi Han ◽  
Shu-Qian Shen

Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2711-2723
Author(s):  
Ksenija Doroslovacki ◽  
Ljiljana Cvetkovic ◽  
Ernest Sanca

The aim of this paper is to obtain new lower bounds for the smallest singular value for some special subclasses of nonsingularH-matrices. This is done in two steps: first, unifying principle for deriving new upper bounds for the norm 1 of the inverse of an arbitrary nonsingular H-matrix is presented, and then, it is combined with some well-known upper bounds for the infinity norm of the inverse. The importance and efficiency of the results are illustrated by an example from ecological modelling, as well as on a type of large-scale matrices posessing a block structure, arising in boundary value problems.


2021 ◽  
Vol 13 (5) ◽  
pp. 1
Author(s):  
Liao Ping

In this paper, we get a lower bound of the smallest singular value of an arbitrarily matrix A by the trace of H(A) and the Euclidean norm of H(A), where H(A) is Hermitian part of A, numerical examples show the e ectiveness of our results.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Yating Li ◽  
Yaqiang Wang

Based on the Schur complement, some upper bounds for the infinity norm of the inverse of generalized doubly strictly diagonally dominant matrices are obtained. In addition, it is shown that the new bound improves the previous bounds. Numerical examples are given to illustrate our results. By using the infinity norm bound, a lower bound for the smallest singular value is given.


Sign in / Sign up

Export Citation Format

Share Document