diagonally dominant
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Yating Li ◽  
Yaqiang Wang

Based on the Schur complement, some upper bounds for the infinity norm of the inverse of generalized doubly strictly diagonally dominant matrices are obtained. In addition, it is shown that the new bound improves the previous bounds. Numerical examples are given to illustrate our results. By using the infinity norm bound, a lower bound for the smallest singular value is given.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Gashaye Dessalew ◽  
Tesfaye Kebede ◽  
Gurju Awgichew ◽  
Assaye Walelign

In this paper, we present refinement of multiparameters overrelaxation (RMPOR) method which is used to solve the linear system of equations. We investigate its convergence properties for different matrices such as strictly diagonally dominant matrix, symmetric positive definite matrix, and M-matrix. The proposed method minimizes the number of iterations as compared with the multiparameter overrelaxation method. Its spectral radius is also minimum. To show the efficiency of the proposed method, we prove some theorems and take some numerical examples.


2021 ◽  
Vol 4 (1) ◽  
pp. 53-61
Author(s):  
KJ Audu ◽  
YA Yahaya ◽  
KR Adeboye ◽  
UY Abubakar

Given any linear stationary iterative methods in the form z^(i+1)=Jz^(i)+f, where J is the iteration matrix, a significant improvements of the iteration matrix will decrease the spectral radius and enhances the rate of convergence of the particular method while solving system of linear equations in the form Az=b. This motivates us to refine the Extended Accelerated Over-Relaxation (EAOR) method called Refinement of Extended Accelerated Over-Relaxation (REAOR) so as to accelerate the convergence rate of the method. In this paper, a refinement of Extended Accelerated Over-Relaxation method that would minimize the spectral radius, when compared to EAOR method, is proposed. The method is a 3-parameter generalization of the refinement of Accelerated Over-Relaxation (RAOR) method, refinement of Successive Over-Relaxation (RSOR) method, refinement of Gauss-Seidel (RGS) method and refinement of Jacobi (RJ) method. We investigated the convergence of the method for weak irreducible diagonally dominant matrix, matrix or matrix and presented some numerical examples to check the performance of the method. The results indicate the superiority of the method over some existing methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yating Li ◽  
Xiaoyong Chen ◽  
Yi Liu ◽  
Lei Gao ◽  
Yaqiang Wang

In this paper, the question of when the subdirect sum of two doubly strictly diagonally dominant (DSDDs) matrices is addressed. Some sufficient conditions are given, and these sufficient conditions only depend on the elements of the given matrices. Moreover, examples are presented to illustrate the corresponding results.


2021 ◽  
pp. 108034
Author(s):  
Peng Wang ◽  
Lyudmila Mihaylova ◽  
Said Munir ◽  
Rohit Chakraborty ◽  
Jikai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document