The in vitro senescence of human T lymphocytes: Failure to divide is not associated with a loss of cytolytic activity or memory T cell phenotype

1993 ◽  
Vol 67 (1-2) ◽  
pp. 173-185 ◽  
Author(s):  
N.L. Perillo ◽  
F. Naeim ◽  
R.L. Walford ◽  
R.B. Effros
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3771-3771
Author(s):  
Jae H. Park ◽  
Raymond Yeh ◽  
Isabelle Rivière ◽  
Michel Sadelain ◽  
Renier J. Brentjens

Abstract Abstract 3771 Adoptive infusion of T cells genetically modified to express chimeric antigen receptors (CARs) targeted to tumor associated antigens (TAAs) is a promising approach to cancer therapy. However, since TAAs are often expressed by normal tissues, safeguards are needed in the form of additional transduced suicide genes to allow for the efficient in vivo abrogation of infused T cells in case of unanticipated adverse events which may develop in the clinical setting. To this end, we have investigated the in vitro function of 3 different suicide genes each inserted distal to a CAR gene targeted against CD19 (19-28z) and a 2A linker peptide cloned into the SFG gammaretroviral vector. Specifically, we have tested the herpes simplex virus thymidine kinase (HSV-TK SR39) with the prodrug ganciclovir, inducible caspase 9 (iCasp9) with the chemical inducer of dimerization (CID), and the E.coli derived nitroreductase (NTR) with the prodrug metronidazole. Cell growth of PG13 murine fibroblasts transduced to express 19–28z CAR with NTR, HSV-TK, and iCasp9 was inhibited by 80% at 1mM of metronidazole, 85% at 1μM of ganciclovir, and 90% at 10nM of CID, respectively, when compared to control PG-13 fibroblasts. The drug concentrations tested in these assays were at physiologically achievable concentrations in humans, and did not affect the growth rate of control PG13 fibroblasts. Consistent with these findings in PG13 fibroblasts, we found that human T cells transduced with either 1928z.2A.NTR or 1928z.2A.HSV-TK demonstrated 90% and 88% inhibition, respectively, at similar substrate concentrations. Furthermore, we demonstrate that expression of these suicide genes does not affect the phenotype or function of the 19–28z CAR+ T cells, as assessed in vitro by T cell proliferation and cytotoxicity against CD19-expressing tumor cells. Our studies demonstrate highly effective suicide genes for human T lymphocytes transduced with a tumor targeted CAR, and a novel suicide gene/prodrug (NTR/metronidazole) combination with a comparable efficacy that can potentially serve as a reliable safety mechanism for adoptive T cell immunotherapy. While HSV-TK/ganciclovir has been utilized in various clinical settings, the NTR suicide gene has yet to be used in combination with gene modified tumor-targeted T cells. Furthermore, the NTR suicide gene holds several advantages over the HSV-TK and iCasp9 vectors. First, unlike HSV-TK, the NTR suicide gene is effective in both proliferating and non-proliferating cells. Second, unlike CID that is not commercially available, metronidazole is a widely available antibiotic that is relatively non-toxic. Lastly, metronidazole can be used in patients who may already be taking ganciclovir for cytomegalovirus (CMV) prophylaxis or treatment therefore limiting the application of T cells modified to express the HSV-TK suicide gene. Based on this in vitro data, we are currently testing the function of this suicide gene in vivo in two different animal models. Ultimately we anticipate that further studies with this novel suicide gene/prodrug combination will allow us to enhance safety in future clinical trials utilizing gene modified tumor targeted T cells. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (9) ◽  
pp. 4656-4664 ◽  
Author(s):  
K E Clemens ◽  
G Piras ◽  
M F Radonovich ◽  
K S Choi ◽  
J F Duvall ◽  
...  

The Tax protein of human T-cell lymphotropic virus type 1 (HTLV-1) is a 40-kDa transcriptional activator which is critical for HTLV-1 gene regulation and virus-induced cellular transformation. Tax is localized to the DNA through its interaction with the site-specific activators cyclic AMP-responsive element-binding protein, NF-kappaB, and serum response factor. It has been suggested that the recruitment of Tax to the DNA positions Tax for interaction with the basal transcriptional machinery. On the basis of several independent assays, we now report a physical and functional interaction between Tax and the transcription factor, TFIIA. First, Tax was found to interact with the 35-kDa (alpha) subunit of TFIIA in the yeast two-hybrid interaction system. Importantly, two previously characterized mutants with point mutations in Tax, M32 (Y196A, K197S) and M41 (H287A, P288S), which were shown to be defective in Tax-activated transcription were unable to interact with TFIIA in this assay. Second, a glutathione-S-transferase (GST) affinity-binding assay showed that the interaction of holo-TFIIA with GST-Tax was 20-fold higher than that observed with either the GST-Tax M32 activation mutant or the GST control. Third, a coimmunoprecipitation assay showed that in HTLV-1-infected human T lymphocytes, Tax and TFIIA were associated. Finally, TFIIA facilitates Tax transactivation in vitro and in vivo. In vitro transcription studies showed reduced levels of Tax-activated transcription in cell extracts depleted of TFIIA. In addition, transfection of human T lymphocytes with TFIIA expression vectors enhanced Tax-activated transcription of an HTLV-1 long terminal repeat-chloramphenicol acetyltransferase reporter construct. Our study suggests that the interaction of Tax with the transcription factor TFIIA may play a role in Tax-mediated transcriptional activation.


2006 ◽  
Vol 87 (12) ◽  
pp. 3577-3586 ◽  
Author(s):  
Sonya A. MacParland ◽  
Tram N. Q. Pham ◽  
Shashi A. Gujar ◽  
Tomasz I. Michalak

While exploring previous findings that ex vivo treatment of lymphoid cells from Hepatitis C virus (HCV)-infected individuals with T cell-stimulating mitogens augments detection of the residing virus, an in vitro HCV replication system was established, in which mitogen-induced T cell-enriched cultures served as HCV targets and the derived T cells multiplied virus during repeated serial passage. HCV replication was ascertained by detecting HCV RNA positive and negative strands, HCV NS5a and E2 proteins, release of HCV virions and nucleocapsids (confirmed by immunoelectron microscopy) and de novo infection of mitogen-induced T cells prepared from healthy donors. Further, affinity-purified normal human T lymphocytes were also susceptible to HCV infection in vitro and HCV replication was detected in pure T cells isolated from a patient with chronic hepatitis C. These results document that T cells can support propagation of HCV both in vivo and in vitro. The infection system established offers a valuable tool for in vitro studies on the entire cycle of HCV replication, virus cytopathogenicity and evaluation of antiviral agents against wild-type HCV in the natural host-cell milieu.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 342 ◽  
Author(s):  
Marina Mühlberger ◽  
Harald Unterweger ◽  
Julia Band ◽  
Christian Lehmann ◽  
Lukas Heger ◽  
...  

For the conversion of immunologically cold tumors, characterized by a low T cell infiltration, into hot tumors, it is necessary to enrich T cells in the tumor area. One possibility is the use of magnetic fields to direct T cells into the tumor. For this purpose, primary T cells that were freshly isolated from human whole blood were loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate). Cell toxicity and particle uptake were investigated by flow cytometry and atomic emission spectroscopy. The optimum loading of the T cells without any major effect on their viability was achieved with a particle concentration of 75 µg Fe/mL and a loading period of 24 h. The cellular content of SPIONCitrate was sufficient to attract these T cells with a magnet which was monitored by live-cell imaging. The functionality of the T cells was only slightly influenced by SPIONCitrate, as demonstrated by in vitro stimulation assays. The proliferation rate as well as the expression of co-stimulatory and inhibitory surface molecules (programmed cell death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain containing 3 (Tim-3), C-C motif chemokine receptor 7 (CCR7), CD25, CD45RO, CD69) was investigated and found to be unchanged. Our results presented here demonstrate the feasibility of loading primary human T lymphocytes with superparamagnetic iron oxide nanoparticles without influencing their viability and functionality while achieving sufficient magnetizability for magnetically controlled targeting. Thus, the results provide a strong fundament for the transfer to tumor models and ultimately for new immunotherapeutic approaches for cancer treatment.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3464-3464
Author(s):  
Jooeun Bae ◽  
Constantine Mitsiades ◽  
Rao Prabhala Prabhala ◽  
Tai Yu-Tzu ◽  
Jeff Martinson ◽  
...  

Abstract Hsp90 inhibitor has shown promising anti-tumor activity through the destabilization and eventual degradation of Hsp90 client proteins critical for cell survival. In this study, we examined the in vitro effects of Hsp90 inhibitor on the phenotype and function of human T lymphocytes and NK cells. We observed no significant effects of Hsp90 inhibitor treatment on cell survivals. However, Hsp90 inhibitor treatment for 24 hours led to irreversible down-regulation of expression of critical T-cell surface antigens including CD3, CD4, CD8, CD28, CD154 (CD40L) and TCRab. Among the antigens evaluated, expression of CD4 antigen was most significantly downregulated (untrt vs. trt = 326 vs. 88 in Mean Fluorescence Intensity) following Hsp90 inhibitor treatment. Decreased CD3+ T lymphocytes proliferation (untrt vs. trt = 222839 cpm vs. 111102 cpm, 3[H]-thymidine incorporation) and reduced IFN-g secretion (untrt vs. trt = 77 vs. 48 pg/ml) was observed upon stimulation with allogeneic dendritic cells following 24 hrs treatments of T cells with Hsp90 inhibitor. Furthermore, CD3+ T-cell proliferation in response to mitogen stimulation, as measured by flow cytometry using CFSE was decreased following Hsp90 inhibitor treatment (untrt vs. trt = 41% vs. 3%, CFSE). Specifically, the CD4+CD28+ (untrt vs. trt = 32% vs. 1%) and CD8+CD28+ (untrt vs. trt = 27% vs. 17%) activated T-cell subpopulations displayed a significant decrease in proliferation in response to mitogen. Similarly, NK cells displayed decreased activation receptor expression including CD2, CD11a, CD94, NKp30, NKp44, NKp46, and KARp50.3 and reduced cytotoxic activity against multiple myeloma cells (untrt vs. trt = 49% vs. 11% against MM1S cells, 65% vs. 8% against ARP cells) following Hsp90 inhibitor treatment. These studies demonstrate that Hsp90 inhibitor treatment significantly affects phenotype and function of human T-lymphocytes as well as NK cells, and suggest the need to monitor immune functions in patients being treated with Hsp90 inhibitor in our future studies.


1985 ◽  
Vol 162 (6) ◽  
pp. 2053-2067 ◽  
Author(s):  
M W Long ◽  
D N Shapiro

Mitogen-activated murine T lymphocytes or T cell hybridomas produce an activity (megakaryocyte [Mk] potentiator activity) that enhances the in vitro growth and development of Mk colonies. This activity was found in optimal concentrations (2.5%) in T cell hybridoma-conditioned medium, and was also produced by feeder layers of concanavalin A-activated T cells. A subpopulation of murine Mk progenitor cells (colony-forming units; CFU-Mk) bears the Ia antigen. Separate experiments indicated that T cell products stimulate CFU-Mk by increasing their basal levels of Ia expression as well as the frequency of cells actively synthesizing DNA. The hypothesis that the expression of this antigen was related to the cell cycle status of these progenitor cells was confirmed in studies that indicated that ablation of actively cycling cells in vivo abrogated the cytotoxic effects of anti-Ia monoclonal antibodies. The interdependence of T cell lymphokine regulation of both Ia expression and cell cycle status was also seen in in vitro experiments in which Ia+ progenitor cells were eliminated by complement-dependent cytotoxicity. The removal of Ia+ cells prevented 5-hydroxyurea-mediated inhibition of cells in S phase. We hypothesize that immune modulation of megakaryocytopoiesis occurs via soluble T cell products that augment Mk differentiation. Further, the mechanism of immune recognition/modulation may occur via Ia antigens present on the surface of these progenitor cells.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 1527-1539
Author(s):  
Xiaoou Ren ◽  
Anthony E. Getschman ◽  
Samuel Hwang ◽  
Brian F. Volkman ◽  
Thomas Klonisch ◽  
...  

Our skin-on-chip (SoC) model uniquely enabled quantitative studies of transendothelial and transepithelial migration of human T lymphocytes under mimicked inflammatory skin conditions and was used to test new drug candidates.


1986 ◽  
Vol 164 (3) ◽  
pp. 962-967 ◽  
Author(s):  
M F Luciani ◽  
J F Brunet ◽  
M Suzan ◽  
F Denizot ◽  
P Golstein

At least some long-term in vitro-cultured cytotoxic T cell clones and uncloned cell populations are able, in the presence of Con A, to lyse other cells, to be lysed by other cells, but not to lyse themselves. This as-yet-unexplained result may have implications as to the mechanism of T cell-mediated cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document