Bone-implant interface mechanics of in vivo bio-inert ceramics

Biomaterials ◽  
1993 ◽  
Vol 14 (15) ◽  
pp. 1173-1179 ◽  
Author(s):  
K HAYASHI ◽  
T INADOME ◽  
H TSUMURA ◽  
T MASHIMA ◽  
Y SUGIOKA
1994 ◽  
Vol 43 (2) ◽  
pp. 724-727
Author(s):  
Tatsuro Inadome ◽  
Kazuo Hayashi ◽  
Tatsuoki Mashima ◽  
Yoichi Sugioka

2016 ◽  
Vol 17 (3-4) ◽  
Author(s):  
Anastasia Myrissa ◽  
Elisabeth Martinelli ◽  
Gábor Szakács ◽  
Leopold Berger ◽  
Johannes Eichler ◽  
...  

AbstractBioresorbable magnesium materials are widely investigated because of their promising properties as orthopedic devices. Pure magnesium (99.99%) and two binary magnesium alloys (Mg2Ag and Mg10Gd) were used to investigate the degradation behavior, the bone adherence and bone-implant interface mechanics of these materials in growing Sprague-Dawley


2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eduardo Anitua ◽  
Andreia Cerqueira ◽  
Francisco Romero-Gavilán ◽  
Iñaki García-Arnáez ◽  
Cristina Martinez-Ramos ◽  
...  

Abstract Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lingxiao Wang ◽  
Zhenhua Gao ◽  
Yucheng Su ◽  
Qian Liu ◽  
Yi Ge ◽  
...  

AbstractThis study aimed to compare and verify the osseointegration performance of a novel implant (NI) in vivo, which could provide a useful scientific basis for the further development of NIs. Thirty-two NIs treated with hydrofluoric acid and anodization and sixteen control implants (CIs) were placed in the mandibles of 8 beagles. Micro-CT showed that the trabecular number (Tb.N) significantly increased and trabecular separation (Tb.Sp) significantly decreased in the NIs at 2 weeks. Significant differences were found in the trabecular thickness, Tb.N, Tb.Sp, bone surface/bone volume ratio, and bone volume/total volume ratio between the two groups from the 2nd–4th weeks. However, there were no significant differences between the two groups in the bone volume density at 2, 4, 8, or 12 weeks or bone-implant contact at 2 or 4 weeks, but the BIC in the CIs was higher than that in the NIs at the 8th and 12th weeks. Meanwhile, the histological staining showed a similar osseointegration process between the two groups over time. Overall, the NIs could be used as new potential implants after further improvement.


2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


2010 ◽  
Vol 79 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Lucie Urbanová ◽  
Robert Srnec ◽  
Pavel Proks ◽  
Ladislav Stehlík ◽  
Zdeněk Florian ◽  
...  

The study deals with the determination of mechanical properties, namely resistance to bending forces, of flexible buttress osteosynthesis using two different bone-implant constructs stabilizing experimental segmental femoral bone defects (segmental ostectomy) in a miniature pig ex vivo model using 4.5 mm titanium LCP and a 3 mm intramedullary pin (“plate and rod” construct) (PR-LCP), versus the 4.5 mm titanium LCP alone (A-LCP). The “plate and rod” fixation (PR-LCP) of the segmental femoral defect is significantly more resistant (p < 0.05) to bending forces (200 N, 300 N, and 500 N) than LCP alone (A-LCP). Stabilisation of experimental segmental lesions of the femoral diaphysis in miniature pigs by flexible bridging osteosynthesis 4.5 mm LCP in combination with the “plate and rod” construct appears to be a suitable fixation of non-reducible fractures where considerable strain of the implants by bending forces can be assumed. These findings will be used in upcoming in vivo experiments in the miniature pig to investigate bone defect healing after transplantation of mesenchymal stem cells in combination with biocompatible scaffolds.


2011 ◽  
Vol 88 (1) ◽  
pp. 254-259 ◽  
Author(s):  
Huanxin Wang ◽  
Shaokang Guan ◽  
Yisheng Wang ◽  
Hongjian Liu ◽  
Haitao Wang ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. 1812-1823
Author(s):  
Fei Liu ◽  
Xinyu Wang ◽  
Shujun Li ◽  
Yiheng Liao ◽  
Xinxin Zhan ◽  
...  

Ti–24Nb–4Zr–8Sn (Ti2448) alloys, with a relatively low elastic modulus and unique mechanical properties, are desirable materials for oral implantation. In the current study, a multifaceted strontium-incorporating nanotube coating was fabricated on a Ti2448 alloy (Ti2-NTSr) through anodization and hydrothermal procedures. In vitro, the Ti2-NTSr specimens demonstrated better osteogenic properties and more favorable osteoimmunomodulatory abilities. Moreover, macrophages on Ti2-NTSr specimens could improve the recruitment and osteogenic differentiation of osteoblasts. In vivo, dense clots with highly branched, thin fibrins and small pores existed on the Ti2-NTSr implant in the early stage after surgery. Analysis of the deposition of Ca and P elements, hard tissue slices and the bone-implant contact rate (BIC%) of the Ti2-NTSr implants also showed superior osseointegration. Taken together, these results demonstrate that the Ti2-NTSr coating may maximize the clinical outcomes of Ti2448 alloys for implantation applications.


Sign in / Sign up

Export Citation Format

Share Document