The signs of the co-state variables and sufficiency conditions in a class of optimal control problems

1981 ◽  
Vol 8 (4) ◽  
pp. 321-325 ◽  
Author(s):  
Daniel Leonard
2021 ◽  
pp. 107754632110514
Author(s):  
Asiyeh Ebrahimzadeh ◽  
Raheleh Khanduzi ◽  
Samaneh P A Beik ◽  
Dumitru Baleanu

Exploiting a comprehensive mathematical model for a class of systems governed by fractional optimal control problems is the significant focal point of the current paper. The efficiency index is a function of both control and state variables and the dynamic control system relies on Caputo fractional derivatives. The attributes of Bernoulli polynomials and their operational matrices of fractional Riemann–Liouville integrations are applied to convert the optimization problem to the nonlinear programing problem. Executing multi-verse optimizer, moth-flame optimization, and whale optimization algorithm terminate to the most excellent solution of fractional optimal control problems. A study on the advantage and performance between these approaches is analyzed by some examples. Comprehensive analysis ascertains that moth-flame optimization significantly solves the example. Furthermore, the privilege and advantage of preference with its accuracy are numerically indicated. Finally, results demonstrate that the objective function value gained by moth-flame optimization in comparison with other algorithms effectively decreased.


2011 ◽  
Vol 1 ◽  
pp. 387-394 ◽  
Author(s):  
Zhen Yu Han ◽  
Shu Rong Li

This paper presents a numerical method based on quasilinearization and rationalized Haar functions for solving nonlinear optimal control problems including terminal state constraints, state and control inequality constraints. The optimal control problem is converted into a sequence of quadratic programming problems. The rationalized Haar functions with unknown coefficients are used to approximate the control variables and the derivative of the state variables. By adding artificial controls, the number of state and control variables is equal. Then the quasilinearization method is used to change the nonlinear optimal control problems with a sequence of constrained linear-quadratic optimal control problems. To show the effectiveness of the proposed method, the simulation results of two constrained nonlinear optimal control problems are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yongquan Dai ◽  
Yanping Chen

We will investigate the superconvergence for the semidiscrete finite element approximation of distributed convex optimal control problems governed by semilinear parabolic equations. The state and costate are approximated by the piecewise linear functions and the control is approximated by piecewise constant functions. We present the superconvergence analysis for both the control variable and the state variables.


Sign in / Sign up

Export Citation Format

Share Document