Network convergence zones in the anterior midcingulate cortex

Author(s):  
Daniel S. Margulies ◽  
Lucina Q. Uddin
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1484
Author(s):  
Yunyoung Choi ◽  
Jaehyung Park ◽  
Jiwon Jung ◽  
Younggoo Kwon

In home and building automation applications, wireless sensor devices need to be connected via unreliable wireless links within a few hundred milliseconds. Routing protocols in Low-power and Lossy Networks (LLNs) need to support reliable data transmission with an energy-efficient manner and short routing convergence time. IETF standardized the Point-to-Point RPL (P2P-RPL) routing protocol, in which P2P-RPL propagates the route discovery messages over the whole network. This leads to significant routing control packet overhead and a large amount of energy consumption. P2P-RPL uses the trickle algorithm to control the transmission rate of routing control packets. The non-deterministic message suppression nature of the trickle algorithm may generate a sub-optimal routing path. The listen-only period of the trickle algorithm may lead to a long network convergence time. In this paper, we propose Collision Avoidance Geographic P2P-RPL, which achieves energy-efficient P2P data delivery with a fast routing request procedure. The proposed algorithm uses the location information to limit the network search space for the desired route discovery to a smaller location-constrained forwarding zone. The Collision Avoidance Geographic P2P-RPL also dynamically selects the listen-only period of the trickle timer algorithm based on the transmission priority related to geographic position information. The location information of each node is obtained from the Impulse-Response Ultra-WideBand (IR-UWB)-based cooperative multi-hop self localization algorithm. We implement Collision Avoidance Geographic P2P-RPL on Contiki OS, an open-source operating system for LLNs and the Internet of Things. The performance results show that the Collision Avoidance Geographic P2P-RPL reduced the routing control packet overheads, energy consumption, and network convergence time significantly. The cooperative multi-hop self localization algorithm improved the practical implementation characteristics of the P2P-RPL protocol in real world environments. The collision avoidance algorithm using the dynamic trickle timer increased the operation efficiency of the P2P-RPL under various wireless channel conditions with a location-constrained routing space.


2016 ◽  
Vol 121 (19) ◽  
pp. 11,590-11,607 ◽  
Author(s):  
Benjamin R. Lintner ◽  
Baird Langenbrunner ◽  
J. David Neelin ◽  
Bruce T. Anderson ◽  
Matthew J. Niznik ◽  
...  

2017 ◽  
Vol 30 (2) ◽  
pp. 571-579 ◽  
Author(s):  
Amy Krain Roy ◽  
Randi Bennett ◽  
Jonathan Posner ◽  
Leslie Hulvershorn ◽  
F. Xavier Castellanos ◽  
...  

AbstractSevere temper outbursts (STO) in children are associated with impaired school and family functioning and may contribute to negative outcomes. These outbursts can be conceptualized as excessive frustration responses reflecting reduced emotion regulation capacity. The anterior cingulate cortex (ACC) has been implicated in negative affect as well as emotional control, and exhibits disrupted function in children with elevated irritability and outbursts. This study examined the intrinsic functional connectivity (iFC) of a region of the ACC, the anterior midcingulate cortex (aMCC), in 5- to 9-year-old children with STO (n = 20), comparing them to children with attention-deficit/hyperactivity disorder (ADHD) without outbursts (ADHD; n = 18). Additional analyses compared results to a sample of healthy children (HC; n = 18) and examined specific associations with behavioral and emotional dysregulation. Compared to the ADHD group, STO children exhibited reduced iFC between the aMCC and surrounding regions of the ACC, and increased iFC between the aMCC and precuneus. These differences were also seen between the STO and HC groups; ADHD and HC groups did not differ. Specificity analyses found associations between aMCC–ACC connectivity and hyperactivity, and between aMCC–precuneus iFC and emotion dysregulation. Disruption in aMCC networks may underlie the behavioral and emotional dysregulation characteristic of children with STO.


2013 ◽  
Vol 553 ◽  
pp. L2 ◽  
Author(s):  
C. Cossou ◽  
S. N. Raymond ◽  
A. Pierens
Keyword(s):  
Type I ◽  

1997 ◽  
Vol 334 ◽  
pp. 1-30 ◽  
Author(s):  
JAMES C. McWILLIAMS ◽  
PETER P. SULLIVAN ◽  
CHIN-HOH MOENG

Solutions are analysed from large-eddy simulations of the phase-averaged equations for oceanic currents in the surface planetary boundary layer (PBL), where the averaging is over high-frequency surface gravity waves. These equations have additional terms proportional to the Lagrangian Stokes drift of the waves, including vortex and Coriolis forces and tracer advection. For the wind-driven PBL, the turbulent Langmuir number, Latur = (U∗/Us)1/2, measures the relative influences of directly wind-driven shear (with friction velocity U∗) and the Stokes drift Us. We focus on equilibrium solutions with steady, aligned wind and waves and a realistic Latur = 0.3. The mean current has an Eulerian volume transport to the right of the wind and against the Stokes drift. The turbulent vertical fluxes of momentum and tracers are enhanced by the presence of the Stokes drift, as are the turbulent kinetic energy and its dissipation and the skewness of vertical velocity. The dominant coherent structure in the turbulence is a Langmuir cell, which has its strongest vorticity aligned longitudinally (with the wind and waves) and intensified near the surface on the scale of the Stokes drift profile. Associated with this are down-wind surface convergence zones connected to interior circulations whose horizontal divergence axis is rotated about 45° to the right of the wind. The horizontal scale of the Langmuir cells expands with depth, and there are also intense motions on a scale finer than the dominant cells very near the surface. In a turbulent PBL, Langmuir cells have irregular patterns with finite correlation scales in space and time, and they undergo occasional mergers in the vicinity of Y-junctions between convergence zones.


Sign in / Sign up

Export Citation Format

Share Document