Colliding Bodies Optimization method for optimum design of truss structures with continuous variables

2014 ◽  
Vol 70 ◽  
pp. 1-12 ◽  
Author(s):  
A. Kaveh ◽  
V.R. Mahdavi
Author(s):  
Ali Kaveh ◽  
Mehran Moradveisi

The main aim of this paper is to present a new solution for simultaneous shape and size optimization of double-layer grids. In order to find the optimum design, Enhanced Colliding Bodies Optimization method is applied to the optimum design of the most common examples of double-layer grids, while both material and geometrical nonlinearity are taken into account. The small and big sizes of span length are considered for each type of square grids. The algorithm gets the minimum weight grid by finding the best nodal location in z-direction (height of the structure) and the suitable selection from the list of tube sections available in American Institute of Steel Construction Load and Resistance Factor Design, simultaneously. All examples are optimized with strength and displacement constraints. The numerical results demonstrate the efficiency and robustness of the presented method for solving real-world practical double-layer grids.


Author(s):  
Giridhar Reddy ◽  
Jonathan Cagan

Abstract A method for the design of truss structures which encourages lateral exploration, pushes away from violated spaces, models design intentions, and produces solutions with a wide variety of characteristics is introduced. An improved shape annealing algorithm for truss topology generation and optimization, based on the techniques of shape grammars and simulated annealing, implements the method. The algorithm features a shape grammar to model design intentions, an ability to incorporate geometric constraints to avoid obstacles, and a shape optimization method using only simulated annealing with more consistent convergence characteristics; no traditional gradient-based techniques are employed. The improved algorithm is illustrated on various structural examples generating a variety of solutions based on a simple grammar.


2013 ◽  
Vol 655-657 ◽  
pp. 435-444
Author(s):  
Dong Xia Niu ◽  
Xian Yi Meng ◽  
Ai Hua Zhu

In the case of multiple loading conditions, a moving blade adjustable axial flow fan structure parameters are optimized by ANSYS. It is to achieve greater efficiency and less noise for the optimization goal. For different conditions, establish efficiency, noise comprehensive objective function using weighted coefficient method. Select impeller diameter, the wheel hub ratio, leaf number, lift coefficient, speed as design variables, Choose blade installation Angle, the wheel hub place dynamic load coefficient, cascade consistency, allowable safety coefficient as optimization of the state variables. Design variables contain continuous variables and discrete variable. Through the optimization method, we get the optimal structure parameters finally. And at the same time get the corresponding optimal blade installation Angle,under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document