Solute transport in fine sandy loam soil under different flow rates

2006 ◽  
Vol 83 (1-2) ◽  
pp. 111-118 ◽  
Author(s):  
José Luis Costa ◽  
Lyle Prunty
Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 641-647 ◽  
Author(s):  
Frederick M. Fishel ◽  
G. Euel Coats

Experiments were conducted in 1990 and 1991 to determine bioavailability of PRE herbicides at three soil profile depths and two soil types in established common bermudagrass sods. Prodiamine and oryzalin reduced ‘Tifgreen’ bermudagrass root growth in the 5- to 7.5-cm layer of a Bosket very fine sandy loam soil at 2 and 4 wk after treatment in 1991. These herbicides decreased bermudagrass root weight in both the Bosket and Marietta sandy clay loam both years in samples taken from the 2.5- to 5-cm depth layer. In the 0- to 2.5-cm soil layer, all herbicides reduced root weight in 1990. In a bioassay, prodiamine caused decreased Tifgreen bermudagrass root growth at concentrations as low as 4 ppb by wt in the very fine sandy loam soil, while 8 ppb was necessary in the sandy clay loam soil. Prodiamine was detected in the very fine sandy loam at 4 wk after treatment at all depths in 1991 (65, 45, and 39 ppb in the 0- to 2.5-, 2.5- to 5-, and 5- to 7.5-cm soil layers, respectively). Oryzalin was also detected at all depths in 1991 when sampled at 2 and 4 wk after treatment in the very fine sandy loam. Pendimethalin was present in concentrations of 38, 39, and 37 ppb in the sandy clay loam at 2 wk after treatment in the 0- to 2.5-, 2.5- to 5-, and the 5- to 7.5-cm soil layers, respectively. Pendimethalin was also detected in the very fine sandy loam at 2 wk after treatment at concentrations of 55, 69, and 36 ppb in the 0- to 2.5-, 2.5- to 5-, and 5- to 7.5-cm soil layers, respectively.


Weed Science ◽  
1983 ◽  
Vol 31 (2) ◽  
pp. 236-241 ◽  
Author(s):  
John H. Miller ◽  
Lyle M. Carter ◽  
Charles Carter

Tillage plus trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) and prometryn [2,4-bis (isopropylamino)-6-(methylthio)-s-triazine] and tillage plus trifluralin and fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] applied as soil-incorporated preplanting treatments were compared with tillage alone in cotton (Gossypium hirsutumL.) grown in 51-cm and 102-cm rows on fine sandy loam soil. Over 3 yr, cotton grown in 51-cm rows yielded 15% more than cotton grown in 102-cm rows. Final cotton emergence was not altered by weed-control treatment or by planting pattern. Weed-control treatments with herbicides provided essentially complete, season-long control of grass and broadleaf weeds. At cotton layby, more weeds were in no-herbicide plots with 51-cm rows compared with 102-cm rows, but at cotton harvest numbers of weeds in both row patterns were essentially equal.


2014 ◽  
Vol 28 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Eric P. Westra ◽  
Dale L. Shaner ◽  
Philip H. Westra ◽  
Phillip L. Chapman

Pyroxasulfone dissipation and mobility in the soil was evaluated and compared toS-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those ofS-metolachlor ranged from 39 to 63 d. Between years, herbicide DT50values were similar under the Nunn fine clay loam soil. Under the Olney fine sandy loam soil, dissipation in 2009 was minimal under dry soil conditions. In 2010, under the Olney fine sandy loam soil,S-metolachlor and pyroxasulfone had half-lives of 39 and 47 d, respectively, but dissipation rates appeared to be influenced by movement of herbicides below 30 cm. Herbicide mobility was dependent on site-year conditions, in all site-years pyroxasulfone moved further downward in the soil profile compared toS-metolachlor.


2019 ◽  
Vol 195 ◽  
pp. 104373 ◽  
Author(s):  
Neil B. McLaughlin ◽  
Allan J. Campbell ◽  
Gordon T. Owen

2019 ◽  
Vol 189 ◽  
pp. 44-51 ◽  
Author(s):  
Hari Bohara ◽  
Syam Dodla ◽  
Jim Jian Wang ◽  
Murali Darapuneni ◽  
Bharat Sharma Acharya ◽  
...  

1994 ◽  
Vol 74 (3) ◽  
pp. 307-314 ◽  
Author(s):  
C. A. Grant ◽  
L. D. Bailey

Distribution of NO3, P, K, Cl, pH and conductance through the soil profile were measured on two soil types after 4 yr of crop production using zero tillage (ZT) or conventional tillage (CT), with or without addition of KCl. All plots received N and P fertilizer each year as banded applications. Surface concentrations of NO3-N were higher under ZT than CT, particularly on the fine sandy loam soil. Accumulation of NO3-N also occurred in the 60- to 120-cm zone, under both tillage systems in both soils. Carryover of NO3-N was substantially greater on the silty clay than the fine sandy loam soil. Phosphate accumulated at the depth of band application in both soils under both tillage systems. Potassium concentration was generally higher under ZT than CT in the surface 15 cm of both soils, presumably due to surface retention of K from fertilizer applications and crop residues. Chloride was higher under ZT than CT in the surface 5 cm of both soils, but was higher under CT than ZT in the 30- to 60-cm and 60- to 120-cm depths in the silty clay soil, if KCl had been applied. The pH on both soils under both tillage systems was reduced in the 10- to 12.5-cm soil depth, corresponding to the zone of fertilizer application. On the silty clay soil, pH was higher under ZT than CT in the 10- to 15-cm depth and tended to be higher under ZT than CT at all depths below 15 cm. Conductance was not influenced by tillage in either soil. Application of KCl increased K and Cl concentrations in the surface 15 cm on both soils. Concentration of Cl was increased to 120 cm in both soils, indicating the mobility and leaching potential of this anion. Conductance and pH were increased in the 2.5- to 5.0-cm and 10- to 12.5-cm depths by KCl application in the fine sandy loam soil, but on the silty clay soil, only conductance was increased. Key words: Zero tillage, nutrient stratification, pH stratification


Weed Science ◽  
1977 ◽  
Vol 25 (2) ◽  
pp. 132-134 ◽  
Author(s):  
G.A. Buchanan ◽  
A.E. Hiltbold

Yields of cotton (Gossypium hirsutumL. ‘Stoneville 213′) did not differ with various cultivation practices on two soils in Alabama over a 3 to 5-yr period. Cultivation treatments resulted in cotton yields equivalent to but not greater than those resulting from weed removal without soil stirring. However, lack of any weed control resulted in more than 90% yield reduction on Decatur clay loam soil based on a 5-yr average and 95% yield reduction on Hartsells fine sandy loam soil, based on a 3-yr average.


1986 ◽  
Vol 66 (1) ◽  
pp. 189-192 ◽  
Author(s):  
A. G. THOMAS ◽  
J. D. BANTING ◽  
G. BOWES

Seeds of green foxtail, Setaria viridis (L.) Beauv., were placed on the surface or buried at four depths from 1.0 to 15.0 cm in a fine sandy loam soil in 1966 and 1967. At regular intervals, packets of seed were exhumed and the viability of the seeds was tested. After 6 yr, less than 1% of the seed placed on the surface remained viable and none of the buried seeds survived longer than 17 yr.Key words: Green foxtail, Setaria viridis, seeds, longevity


Sign in / Sign up

Export Citation Format

Share Document