root weight
Recently Published Documents


TOTAL DOCUMENTS

851
(FIVE YEARS 273)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
pp. 038-046
Author(s):  
Zipporah Page ◽  
David P Tokpah ◽  
Khady N Drame ◽  
Zogbo Luther ◽  
Victor M Voor ◽  
...  

Rice (Oryza sativa L.) is a staple food crop in many countries in Africa. Africa consumes 11.6 million tons of rice per annum and out of 39 rice-producing countries, 21 import 50% to 99% of their rice requirements. The inability to reach the yield potential that would sustain Africa’s need for rice is due to many biotic and abiotic constraints that rice production faces. In lowland grown rice, one of the abiotic factors hindering rice production is iron toxicity. Excess uptake of ferrous (Fe2+) ions leads to a physiological stress, which results, into poor production. The current study aimed at selection of varieties tolerant to iron toxicity and assessment of the genetic diversity linked to this trait. In a hydroponic experiment conducted in a screen house at Africa Rice Centre in Dar es Salaam, 32 rice varieties were evaluated for tolerance to iron toxicity. The experiment was laid out in a split plot design with iron concentration as the main plot factor and variety as the sub plot factor. Two levels of iron concentration were used: 2 ppm and 300 ppm of Fe2+ as control and test concentrations, respectively. Traits observed to gauge tolerance were leaf bronzing (an indicator of iron toxicity), plant height, tillering, number of leaves, shoot weight (above ground), root length and root weight. The varieties ARICA8, and CK801 were found to be tolerant due to low bronzing indices, higher shoot weight, more number of leaves and lack of significant variation in morphology between the two Fe treatments except for the plant height. Correlation analysis depicted negative correlation between leaf bronzing and the other traits measured especially shoot biomass.


2022 ◽  
Vol 8 ◽  
Author(s):  
Nadia Riaz ◽  
Zubaida Yousaf ◽  
Zarina Yasmin ◽  
Muneeb Munawar ◽  
Afifa Younas ◽  
...  

Nutraceuticals can serve as an alternative supplement to overcome nutritional deficiency for a healthy lifestyle. They can also play a key role in disease management. To develop carrot nutraceutical products, 64 genotypes from four different continents were evaluated for a range of morpho-nutrition variables. Genetic variability, heritability, strength and direction of association among variables, and direct and indirect relationships among physiochemical and nutritional traits with β-carotene content were evaluated. Core diameter, foliage weight, root weight and shoulder weight showed significant association with β-carotene accumulation. Principal component analysis for physiochemical and nutritional assessment divided these genotypes into two distinctive groups, Eastern carrots and Western carrots. Caloric and moisture content had high positive associations with β-carotene content while carbohydrate content was negatively associated. Five genotypes (T-29, PI 634658, PI 288765, PI 164798, and Ames 25043) with the highest β-carotene contents were selected for making three nutraceutical supplements (carrot-orange juice, carrot jam and carrot candies). These nutraceutical supplements retained high β-carotene content coupled with antioxidant properties. Carrot jam (6.5 mg/100 g) and carrot candies (4.8 mg/100 g) had greater concentrations of β-carotene than carrot-orange juice (1.017 mg/100 g). Carrot jam presented high antioxidant activity with the highest values in T-29 (39% inhibition of oxidation) followed by PI 634658 (37%), PI 164798 (36.5%), Ames 25043 (36%) and PI 288765 (35.5%). These nutraceutical products, with 4–6.5 mg/100 g β-carotene content, had higher values than the USDA recommended dietary intake of 3–6 mg β-carotene/day can be recommended for daily use to lower the risk of chronic disease.


2022 ◽  
Vol 25 (8) ◽  
pp. 805-811
Author(s):  
O. G. Smirnova ◽  
T. A. Pshenichnikova

One of the main ways to fine-tune the adaptive potential of wheat cultivars is to regulate the timing of flowering using the genes of the Vrn-1 locus, which determines the type and rate of development. Recently, with the use of introgression and isogenic lines of bread wheat, it was shown that this locus is involved in the genetic control of root length and weight both under irrigation and drought conditions. It turned out that the VrnA1 gene is associated with a significant decrease in the size of the root system in a winter genotype. The Vrn-A1 gene had the strongest effect on the reduction of the root system in comparison with the homoeoallelic genes Vrn-B1 and Vrn-D1. The aim of this work was to determine whether the allelic composition of the genes at the Vrn-1 locus affects the root size in seven spring cultivars and in two lines of bread wheat differing in flowering time under conditions of normal watering and drought. The research was carried out in a hydroponic greenhouse; drought was created at the tillering stage. In this work, we have shown that early flowering wheat cultivars with the dominant Vrn-A1а allele have more lightweight and shorter roots under normal watering conditions compared to the late flowering carriers of the dominant homoeoalleles Vrn-B1 and Vrn-D1. In drought conditions, the root length decreased insignificantly, but the weight of the roots significantly decreased in all genotypes, with the exception of Diamant 2. It has been hypothesized that the level of the transcription factor VRN-1 at the onset of drought may affect the size of the root system. The large variability in root weight may indicate the participation, in addition to the Vrn-1 locus, of other gene networks in the formation of this trait. Breeders working to develop early maturing varieties should consider the possibility of reducing the root size, especially in arid conditions. A significant increase in the root size of line 821 with introgressions into chromosomes 2A, 2B, and 5A from T. timopheevii indicates the possibility of using congeners as a source of increasing the trait in wheat.


2021 ◽  
Vol 27 (4) ◽  
pp. 495-504
Author(s):  
Imran Khan ◽  
Muhammad Iqbal ◽  
Malik Muhammad Hashim ◽  
Muhammad Saleem Jilani ◽  
Mohammad Safdar Baloch ◽  
...  

Weed infestation is a major problem and matter of concern as it reduces yield as well as quality of many crops including sugar beet. Manual weeding is very tedious, costly, time consuming and most probably non-availability of trained and skillful labor is another issue. Keeping in view these facts, an experiment was performed to evaluate the efficacy of dual gold on the weed biomass (gm-2) and on the growth and yield components of sugar beet (Beta vulgaris L.) cv. California-KWS during 2013-14 and 2014-15. The study was performed using RCBD having five treatments and three replications. The treatments included different application times (pre-emergence application and application after 15, 30 and 45 days after emergence) of dual gold (s-Metolachlor) and a control (weedy check). Data were recorded on fresh and dry weed biomasses (g m-2), number of leaves plant-1, leaf area plant-1 (cm2), leaf and root weights plant-1 (g), sucrose%, TSS%, root and sugar yields (t ha-1). The results showed significant variation among the treatments for all parameters during both years of study. Among the treatments the dual gold (s-Metolachlor) applied as pre-emergence reduced weed fresh and dry biomasses (g m-2) and also enhanced number of leaves plant-1, leaf area (cm2), leaf and root weight plant-1, sucrose%, TSS%, root and sugar yields (t ha-1) during both years. Hence it is concluded that dual gold (s-Metolachlor) applied as pre-emergence is best for eradicating weeds at early stages of growth and hence improving yield and quality of sugar beet under Dera Ismail Khan Conditions.


2021 ◽  
Vol 2 (2) ◽  
pp. 177-194
Author(s):  
Muhammad Ayyaz ◽  
Zulqurnain Khan ◽  
Nabila Tabassam ◽  
Tariq Sultan ◽  
Amjad Saeed ◽  
...  

The use of rhizobacteria for plant growth enhancement is decades old. Still, in this era of the 21st century, biofertilizers have become the need of the day due to the health and environmental concerns associated with chemical fertilizers and pesticides. Rhizobacteria strains were isolated from the rhizosphere of rice and wheat. The selected bacterial strains' nitrogen fixation, indole acetic acid (IAA) production, phosphorus solubilization, and antifungal activity were determined on morphological, biochemical, and molecular levels. Production of IAA ranged from 6 µg/ml to 29.33 µg/ml. Ethylene production (C2H4/hr) varied from 2 µmoles to 9.8 µmoles. Maximum Phosphorus Solubilization index (7), decrease in pH (4) and Solubilization % age (0.49) was observed in WM-2 (wheat microbe). Promising results were obtained concerning antifungal activity against Rhizoctonia solani and Fusarium sp. The effect of the potential PGPR strains on the germination of rice and wheat was significantly positive in Petri plates. In the case of rice, the highest shoot length (29.27 cm) was observed by inoculation with RPR-33 (Rice isolate), and the most increased root length (9.33 cm) was observed in the treatment inoculated with RPR-42. The highest shoot fresh weight (476.67 mg/plant) was recorded in the treatment inoculated with RPR-42. The maximum root weight was 170 mg/plant in the same treatment. For wheat, all recorded growth parameters were improved significantly by wheat microbe WM-5. All the PGPR isolates showed positive results for growth parameters of wheat and rice on inoculation. So, it is suggested that these PGPR isolates may be used in potential biofertilizers.


Agro-Science ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
D.A. Okpara ◽  
D.C. Udeh ◽  
O.K. Akinbo ◽  
O.N. Eke-Okoro ◽  
A.O. Olojede

Investigations were conducted to study the effect of stem portion and number of stakes per stand on crop establishment, growth and yield of cassava variety NR 8082 in Umudike Southeastern Nigeria during the 2016/17 and 2017/18 cropping seasons. In each year, the experiment was laid out as a 3 × 3 factorial, in randomized complete block design with three replications. Treatments consisted of three stem portions of different physiological ages (top, middle and basal) and three numbers of stakes per stand (1, 2 and 3). The middle and basal stem portions significantly increased percent establishment, plant height and leaf area index at 3 months after planting (MAP) but had no effect on number of storage roots per plant. The best stem portion for storage root yield was, however, the top portion which produced the highest yield on average. Number of stakes per stand did not significantly affect stem girth, number of nodes per plant and leaf area index, but the use of 1 stake per stand increased number of storage roots per plant, root weight and storage oot yield in 2017/2018 cropping season. Number of stakes per stand did not significantly influence storage root yield across the two seasons of evaluation. Interactions between stem portion and number of stakes per stand did not significantly affect storage root yield of NR 8082 high cassava variety in both cropping seasons. Based on the findings, the use of 1 stake per stand is recommended for high root yields of NR 8082 cassava variety under conditions of low soil fertility in Umudike, South East Nigeria. Although the top portion enhanced root yield, farmers could use any of the stem portions, since the middle and basal parts gave satisfactory yields and had better establishment than the former.


2021 ◽  
Vol 10 (36) ◽  
pp. 226-228
Author(s):  
Aurea Regina Telles Pupulin ◽  
Thiago Telles Pupulin ◽  
Bruno Reis ◽  
Carlos Moacir Bonato

Background: The Brazilian Pharmacopoeia defines the sterilization process as a "method" intended to remove or destroy all forms of life, animal or plant, macroscopic or microscopic, saprophytic or not, present in the product concerned, without ensuring the complete inactivation of toxins or cellular enzymes. Microwaves are electromagnetic waves with frequencies ranging between 300MHz (300x106 Hz) and 300 GHz (300x109 Hz) and wavelengths from 1 m to 1 mm[1]. They are waves that lie within the region between TV waves and the infrared region within the spectrum of electromagnetic waves. According to the Technical Standards Textbook for Homeopathic Pharmacy, glass tubes may be reused after washed with running and purified water and inactivated by autoclaving at 120oC for 30 minutes or by a dry air buffer at 180oC for 30 minutes or at 140oC for 1 hour [2]. Aims: Current experiment evaluates the influence of ultra-diluted Sulphur with and without inactivation by autoclaving and microwaving for certain variables in the germination and growth of sorghum (Sorghum bicolor L. Moench - cv TX623B). Methodology: Ten milliliters of Sulphur in homeopathic dinamizations (proposed by Hering - DH) 9DH, 18DH and 30DH inactivated by microwave and by autoclave heat, and control with water, were added to petri dishes in which 20 sorghum seeds were distributed. The experiment was conducted in a growth chamber (BOD) at 25oC and during a 16-h photoperiod. Double-blind methodology to avoid researcher’s possible interferences or trends, coupled to statistic treatment at the end of the experiment, was employed. Data underwent variance analysis and means were compared by Scott-Knott’s test at 5% probability. Results: Homeopathy Sulphur changed the evaluated parameters of 9DH, 18 DH and 30 DH dinamizations when compared to control (water). Differences existed with regard to effects of the different microwave-treated (M9DH, M18DH, M30DH) and autoclaving-treated (A9DH, A18DH, A30DH) dinamizations. Sulphur had no significant difference in the aerial length (CPA) when compared with that of control. In the case of the same homeopathic treatments previously undergoing autoclaving, the three dinamizations had a similar response to CPA. The same occurred with drugs submitted to microwaves. With regard to root’s growth (CSR), treatment with Sulphur inhibited growth in the dinamizations 18 DH and 30 DH when compared to control. This did not occur with 9 DH which had the same effect as that of water. In the case of groups treated with medicines 30 DH and 9DH undergoing microwaves, the same effect of water was reported. Consequently, microwaves inactivated the effect of homeopathic medicine. However, in 18DH under the effect of microwaves, the effect of drug 18DH was reported. Consequently, there was growth inhibition but no inactivation by microwaves. In the case of groups treated with autoclaved medicine, a greater root growth was reported. This fact shows that autoclaving altered the homeopathic medicine. In fact, it had an opposite effect when compared to control. On the other hand, when Fresh Root Weight was evaluated, differences in control were reported only for groups treated with autoclaved medicines. These results were similar to those of the group treated with medicine 18DH. An increase in the fresh root weight was reported agreeing with a greater root growth. Results related to the aerial part and to the root of the dry mass failed to show any significant difference among the groups. Conclusions: Results show that different physiological responses are produced posterior to the employment of homeopathic medicine, sometimes stimulating, sometimes inhibiting root growth . The aerial part was not influenced by any treatment. On the other hand, autoclaved medicines stimulated root growth[3] [4]. This fact shows changes in the homeopathic medicine under humid heat. Microwave treatments showed an inactivation for 9DH and 30DH, but not for 18DH. The latter had the same results as those treated with Sulphur 18DH. The above results suggest that microwaves may inactivate homeopathic medicines, albeit not entirely. Therefore, it may not be a reliable inactivation methodology.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Eduardo O. Leidi ◽  
Youssef Ech-Chliah ◽  
Sabina Rossini-Oliva ◽  
Marten Sørensen

Among the many neglected underutilized species, tuberous Andean root crops such as the ahipas (Pachyrhizus ahipa) constitute a promising alternative for increasing diversity in nutrient sources and food security at a regional level. ahipa × P. tuberosus). A significant objective was to determine protein and free amino acids in the roots to evaluate their food quality as protein supply. The interspecific hybrids have been found to possess the root quality to provide the crop with a higher dry matter content. The high dry matter content of the P. tuberosus Chuin materials is retained in the root quality of the hybrids. Food functional components such as carbohydrates, organic acids, and proteins were determined in several ahipa accessions and a stable (non-segregating) progeny of the interspecific hybrid, X207. The X207 roots showed a significantly higher dry matter content and a lower content in soluble sugars, but no significant differences were found in starch content or organic acids compared to the ahipa accessions. Regarding the root mineral contents, Fe and Mn concentrations in X207 were significantly raised compared to the average of ahipa accessions. Among the ahipa and the hybrid, no prominent differences in protein content or protein amino acids were found, being both partially defective in providing sufficient daily intake of some essential amino acids. Root weight, a central component of root yield, was significantly higher in X207, but thorough field studies are required to substantiate the hybrid’s superior yield performance.


Author(s):  
M. S. Sabir ◽  
M. K. Khattak ◽  
I. P. Haq ◽  
M. Hanif

An experiment was conducted on the impact of different levels of bulk densities combination on yield and yield components of wheat. Three bulk density levels 1.00-1.30 (A) g cm-3, 1.30-1.60 (B) g cm-3 and 1.60-1.90 (C) g cm-3 with three different depths (0-15, 16-30 and 31-45 cm) were used in the experiment using silt loam soil (Pedocals). The total treatments were 27 in the experiment with three replications. The experimental design was completely randomized design (CRD). The treatment means were checked at the confidence level of 95% of probability. The soil 0-45 cm deep was shifted from the field (no-till) to the net house and was act as control. The results showed that the number of tillers plant-1, number of leaves plant-1 and thousand grain yield were non-significantly affected by all the treatments while number of seed emerged, root length, dry root weight, plant height, grain yield , biological yield  and harvest index  were significantly influenced by various treatments. The highest number of seed germinated (8.00) was found in the treatment BBB (1.30-1.60 g cm-3 in 0-15 cm, 15-30 cm, 30-45 cm soil depth), BAB (1.30-1.60 g cm-3 in 0-15 cm, 1.00-1.30 g  cm-3 in 15-30 cm and 1.30-1.60 g cm-3 in 30-45 cm soil depth) and BCB (1.30-1.60 g cm-3 in 0-15 cm, 1.60-1.90 g cm-3 in 15-30 cm and 1.30-1.60 g cm-3  in 30-45 cm) while the lowest number of seed emerged (3.6) was found in AAA (1.00-1.30 g  cm-3 in 0-15 cm, 15-30 cm and 30-45 cm soil depth), ACA (1.00-1.30 g  cm-3 in 0-15 cm, 1.60-1.90 g cm-3 in 15-30 cm and 1.00-1.30 g  cm-3 in 30-45 cm soil depth) and CAC (1.60-1.90 g cm -3 in 0-15 cm, 1.00-1.30 g  cm-3 in 15-30 cm and 1.60-1.90 g cm-3 in 30-45 cm soil depth). The highest root length (13.12 cm) was found in the treatment AAA while the lowest root length (10.05 cm) was found in CAC. The highest dry root weight (5.67g) was found in the treatment ABA while the lowest dry root weight (4.79g) was found in control treatment. The highest plant height (42.67 cm) was found in the treatment of BBA while the lowest plant height (29.67 cm) was found in control. The highest biological yield (12.1 metric ton ha-1) was found in the treatment ABA while the lowest biological yield (6.8 metric ton ha-1) was found in control. The highest grain yield (4.4 metric ton ha-1) was found by ABB while the lowest (2.7 metric ton ha-1) was found in the control. The highest harvest index (39.79%) was found in the control while the lowest harvest index (34.54%) was found in CCA. The experiment showed that increasing bulk density above 1.60 g cm-3 resulted in decreasing the yield and yield component of the winter wheat. The number of seed emerged, root length, dry root weight, plant height, grain yield, biological yield and harvest index of wheat were significantly affected by soil bulk density in various depths.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2792
Author(s):  
Luis Abraham Chaparro-Encinas ◽  
Gustavo Santoyo ◽  
Juan José Peña-Cabriales ◽  
Luciano Castro-Espinoza ◽  
Fannie Isela Parra-Cota ◽  
...  

The Yaqui Valley, Mexico, has been historically considered as an experimental field for semiarid regions worldwide since temperature is an important constraint affecting durum wheat cultivation. Here, we studied the transcriptional and morphometrical response of durum wheat at an increased temperature (+2 °C) for deciphering molecular mechanisms involved in the thermal adaptation by this crop. The morphometrical assay showed a significant decrease in almost all the evaluated traits (shoot/root length, biovolume index, and dry/shoot weight) except in the dry root weight and the root:shoot ratio. At the transcriptional level, 283 differentially expressed genes (DEGs) were obtained (False Discovery Rate (FDR) ≤ 0.05 and |log2 fold change| ≥ 1.3). From these, functional annotation with MapMan4 and a gene ontology (GO) enrichment analysis with GOSeq were carried out to obtain 27 GO terms significantly enriched (overrepresented FDR ≤ 0.05). Overrepresented and functionally annotated genes belonged to ontologies associated with photosynthetic acclimation, respiration, changes in carbon balance, lipid biosynthesis, the regulation of reactive oxygen species, and the acceleration of physiological progression. These findings are the first insight into the regulation of the mechanism influenced by a temperature increase in durum wheat.


Sign in / Sign up

Export Citation Format

Share Document