A water-balance drip-irrigation scheduling model

2012 ◽  
Vol 113 ◽  
pp. 30-37 ◽  
Author(s):  
T. Sammis ◽  
P. Sharma ◽  
M.K. Shukla ◽  
J. Wang ◽  
D. Miller
2011 ◽  
Author(s):  
Ted W Sammis ◽  
Parmodh Sharma ◽  
Manoj Shukla ◽  
Junming Wang ◽  
David R Miller

2018 ◽  
Vol 210 ◽  
pp. 252-260 ◽  
Author(s):  
Qinsi He ◽  
Sien Li ◽  
Shaozhong Kang ◽  
Hanbo Yang ◽  
Shujing Qin

2017 ◽  
Vol 9 (2) ◽  
pp. 1170-1175 ◽  
Author(s):  
Ankush Ankush ◽  
Vikram Singh ◽  
S. K. Sharma

Drip irrigation technique has proved its superiority over other methods of irrigation due to direct application of water and nutrient in the vicinity of root zone. A field study was conducted to evaluate the effect of irrigation and fertigation scheduling through drip irrigation in tomato (Solanum lycopersicum L.) during Rabi season of 2015-16 at Rajasthan College of Agriculture, MPUAT, Udaipur. There were three irrigation levels and five fertilization levels in split-plot design with three replications. Nutrient content in plant and fruit was found higher under the application of drip irrigation at 100 % PE (I1) and at 100 % RDF through fertigation (F1). Maximum nutrient uptake by tomato i.e. nitrogen (166.83 kg ha-1), phosphorus (41.59 kg ha-1) and potassium (183.08 kg ha-1) was recorded with treatment combination of drip irrigation at 75 % PE (I2) + 75 % RDF through fertigation + 2 foliar spray of 1 % urea phosphate (F3). Similarly, significantly maximum yield and growth attributes i.e. fruit yield (201.25 q ha-1), plant height (67.43 cm) and number of branches (12.33) were registered with treatment combination of drip irrigation at 75 % PE and 75 % RDF through fertigation + 2 foliar spray of 1 % urea phosphate. Drip fertigation method has proved to be very significant in improving nutrient uptake which finally resulting in enhancement of growth and yield of tomato crop.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 888 ◽  
Author(s):  
Christoph Studer ◽  
Simon Spoehel

Appropriate irrigation scheduling for efficient water use is often a challenge for small-scale farmers using drip irrigation. In a trial with 12 farmers in Sébaco, Nicaragua, two tools to facilitate irrigation scheduling were tested: the Water Chart (a table indicating required irrigation doses) and tensiometers. The study aimed at evaluating if and to what extent simple tools can reduce irrigation water use and improve water productivity in drip-irrigated vegetable (beetroot; Beta vulgaris L.) production compared with the farmers’ usual practice. Irrigation water use was substantially reduced (around 20%) when farmers irrigated according to the tools. However, farmers did not fully adhere to the tool guidance, probably because they feared that their crop would not get sufficient water. Thus they still over-irrigated their crop: between 38% and 88% more water than recommended was used during the treatment period, resulting in 91% to 139% higher water use than required over the entire growing cycle. Water productivity of beetroot production was, therefore, much lower (around 3 kg/m3) than what can be achieved under comparable conditions, although yields were decent. Differences in crop yield and water productivity among treatments were not significant. The simplified Water Chart was not sufficiently understandable to farmers (and technicians), whereas tensiometers were better perceived, although they do not provide any indication on how much water to apply. We conclude that innovations such as drip irrigation or improved irrigation scheduling have to be appropriately introduced, e.g., by taking sufficient time to co-produce a common understanding about the technologies and their possible usefulness, and by ensuring adequate follow-up support.


2020 ◽  
Vol 228 ◽  
pp. 105880 ◽  
Author(s):  
Jesús María Domínguez-Niño ◽  
Jordi Oliver-Manera ◽  
Joan Girona ◽  
Jaume Casadesús

Sign in / Sign up

Export Citation Format

Share Document