scholarly journals Approximative K-atomic decompositions and frames in Banach spaces

2018 ◽  
Vol 26 (1/2) ◽  
pp. 153-166
Author(s):  
Shah Jahan

L. Gǎvruţa (2012) introduced a special kind of frames, named K-frames, where K is an operator, in Hilbert spaces, which is significant in frame theory and has many applications. In this paper, first of all, we have introduced the notion of approximative K-atomic decomposition in Banach spaces. We gave two characterizations regarding the existence of approximative K-atomic decompositions in Banach spaces. Also some results on the existence of approximative K-atomic decompositions are obtained. We discuss several methods to construct approximative K-atomic decomposition for Banach Spaces. Further, approximative d-frame and approximative d-Bessel sequence are introduced and studied. Two necessary conditions are given under which an approximative d-Bessel sequence and approximative d-frame give rise to a bounded operator with respect to which there is an approximative K-atomic decomposition. Example and counter example are provided to support our concept. Finally, a possible application is given.

Author(s):  
K. Mahesh Krishna ◽  
P. Sam Johnson

It is known in Hilbert space frame theory that a Bessel sequence can be expanded to a frame. Contrary to Hilbert space situation, using a result of Casazza and Christensen, we show that there are Banach spaces and weak reconstruction sequences which cannot be expanded to approximate Schauder frames. We characterize Banach spaces in which one can expand weak reconstruction sequences to approximate Schauder frames.


Author(s):  
Khole Timothy Poumai ◽  
Shah Jahan

Gavruta [L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012) 139–144] introduced the notion of [Formula: see text]-frame and atomic system for an operator [Formula: see text] in Hilbert spaces. We extend these notions to Banach spaces and obtain various new results. A necessary and sufficient condition for the existence of an atomic system for an operator [Formula: see text] in a Banach space is given. Also, a characterization for the family of local atoms of subspaces of Banach spaces has been given. Further, we give methods to construct an atomic system for an operator [Formula: see text] from a given Bessel sequence and an [Formula: see text]-Bessel sequence. Finally, a result related to stability of atomic system for an operator [Formula: see text] in a Banach space has been given.


Author(s):  
Xianwei Zheng ◽  
Cuiming Zou ◽  
Shouzhi Yang

Digital signals are often modeled as functions in Banach spaces, such as the ubiquitous [Formula: see text] spaces. The frame theory in Banach spaces induces flexible representations of signals due to the robustness and redundancy of frames. Nevertheless, the lack of inner product in general Banach spaces limits the direct representations of signals in Banach spaces under a given basis or frame. In this paper, we introduce the concept of semi-inner product (SIP) [Formula: see text]-Bessel multipliers to extend the flexibility of signal representations in separable Banach spaces, where [Formula: see text]. These multipliers are defined as composition of analysis operator of an SIP-I Bessel sequence, a multiplication with a fixed sequence and synthesis operator of an SIP-II Bessel sequence. The basic properties of the SIP [Formula: see text]-Bessel multipliers are investigated. Moreover, as special cases, characterizations of [Formula: see text]-Riesz bases related to signal representations are given, and the multipliers for [Formula: see text]-Riesz bases are discussed. We show that SIP [Formula: see text]-Bessel multipliers for [Formula: see text]-Riesz bases are invertible. Finally, the continuity of SIP [Formula: see text]-Bessel multipliers with respect to their parameters is investigated. The results theoretically show that the SIP [Formula: see text]-Bessel multipliers offer a larger range of freedom than frames on signal representations in Banach spaces.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 951
Author(s):  
Yuankang Fu ◽  
Qi Liu ◽  
Yongjin Li

Geometric constant is one of the important tools to study geometric properties of Banach spaces. In this paper, we will introduce two new geometric constants JL(X) and YJ(X) in Banach spaces, which are symmetric and related to the side lengths of inscribed equilateral triangles of unit balls. The upper and lower bounds of JL(X) and YJ(X) as well as the values of JL(X) and YJ(X) for Hilbert spaces and some common Banach spaces will be calculated. In addition, some inequalities for JL(X), YJ(X) and some significant geometric constants will be presented. Furthermore, the sufficient conditions for uniformly non-square and normal structure, and the necessary conditions for uniformly non-square and uniformly convex will be established.


Author(s):  
J. A. Conejero ◽  
F. Martínez-Giménez ◽  
A. Peris ◽  
F. Rodenas

AbstractWe provide a complete characterization of the possible sets of periods for Devaney chaotic linear operators on Hilbert spaces. As a consequence, we also derive this characterization for linearizable maps on Banach spaces.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Helena F. Gonçalves

AbstractIn this paper we provide non-smooth atomic decompositions of 2-microlocal Besov-type and Triebel–Lizorkin-type spaces with variable exponents $$B^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w , ϕ ( R n ) and $$F^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w , ϕ ( R n ) . Of big importance in general, and an essential tool here, are the characterizations of the spaces via maximal functions and local means, that we also present. These spaces were recently introduced by Wu et al. and cover not only variable 2-microlocal Besov and Triebel–Lizorkin spaces $$B^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w ( R n ) and $$F^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w ( R n ) , but also the more classical smoothness Morrey spaces $$B^{s, \tau }_{p,q}({\mathbb {R}}^n)$$ B p , q s , τ ( R n ) and $$F^{s,\tau }_{p,q}({\mathbb {R}}^n)$$ F p , q s , τ ( R n ) . Afterwards, we state a pointwise multipliers assertion for this scale.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550062 ◽  
Author(s):  
Yong Jiao ◽  
Lian Wu ◽  
Lihua Peng

In this paper, several weak Orlicz–Hardy martingale spaces associated with concave functions are introduced, and some weak atomic decomposition theorems for them are established. With the help of weak atomic decompositions, a sufficient condition for a sublinear operator defined on the weak Orlicz–Hardy martingale spaces to be bounded is given. Further, we investigate the duality of weak Orlicz–Hardy martingale spaces and obtain a new John–Nirenberg type inequality when the stochastic basis is regular. These results can be regarded as weak versions of the Orlicz–Hardy martingale spaces due to Miyamoto, Nakai and Sadasue.


1986 ◽  
pp. 159-291
Author(s):  
Shizuo Kakutani ◽  
Victor Klee ◽  
Kôsaku Yosida ◽  
Yukio Mimura ◽  
H. F. Bohnenblust ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document