scholarly journals New Geometric Constants in Banach Spaces Related to the Inscribed Equilateral Triangles of Unit Balls

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 951
Author(s):  
Yuankang Fu ◽  
Qi Liu ◽  
Yongjin Li

Geometric constant is one of the important tools to study geometric properties of Banach spaces. In this paper, we will introduce two new geometric constants JL(X) and YJ(X) in Banach spaces, which are symmetric and related to the side lengths of inscribed equilateral triangles of unit balls. The upper and lower bounds of JL(X) and YJ(X) as well as the values of JL(X) and YJ(X) for Hilbert spaces and some common Banach spaces will be calculated. In addition, some inequalities for JL(X), YJ(X) and some significant geometric constants will be presented. Furthermore, the sufficient conditions for uniformly non-square and normal structure, and the necessary conditions for uniformly non-square and uniformly convex will be established.

Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1294
Author(s):  
Asif Ahmad ◽  
Qi Liu ◽  
Yongjin Li

We introduce a new geometric constant Jin(X) based on a generalization of the parallelogram law, which is symmetric and related to the length of the inscribed quadrilateral side of the unit ball. We first investigate some basic properties of this new coefficient. Next, it is shown that, for a Banach space, Jin(X) becomes 16 if and only if the norm is induced by an inner product. Moreover, its properties and some relations between other well-known geometric constants are studied. Finally, a sufficient condition which implies normal structure is presented.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1285
Author(s):  
Asif Ahmad ◽  
Yuankang Fu ◽  
Yongjin Li

In this paper, we will make some further discussions on the JL(X) and YJ(X) which are symmetric and related to the side lengths of some special inscribed triangles of the unit ball, and also introduce two new geometric constants L1(X,▵), L2(X,▵) which related to the perimeters of some special inscribed triangles of the unit ball. Firstly, we discuss the relations among JL(X), YJ(X) and some geometric properties of Banach spaces, including uniformly non-square and uniformly convex. It is worth noting that we point out that uniform non-square spaces can be characterized by the side lengths of some special inscribed triangles of unit ball. Secondly, we establish some inequalities for JL(X), YJ(X) and some significant geometric constants, including the James constant J(X) and the von Neumann-Jordan constant CNJ(X). Finally, we introduce the two new geometric constants L1(X,▵), L2(X,▵), and calculate the bounds of L1(X,▵) and L2(X,▵) as well as the values of L1(X,▵) and L2(X,▵) for two Banach spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Aichun Liu ◽  
Junjie Huang ◽  
Alatancang Chen

Let X i , Y i i = 1,2 be Banach spaces. The operator matrix of the form M C = A C 0 B acting between X 1 ⊕ X 2 and Y 1 ⊕ Y 2 is investigated. By using row and column operators, equivalent conditions are obtained for M C to be left Weyl, right Weyl, and Weyl for some C ∈ ℬ X 2 , Y 1 , respectively. Based on these results, some sufficient conditions are also presented. As applications, some discussions on Hamiltonian operators are given in the context of Hilbert spaces.


2018 ◽  
Vol 26 (1/2) ◽  
pp. 153-166
Author(s):  
Shah Jahan

L. Gǎvruţa (2012) introduced a special kind of frames, named K-frames, where K is an operator, in Hilbert spaces, which is significant in frame theory and has many applications. In this paper, first of all, we have introduced the notion of approximative K-atomic decomposition in Banach spaces. We gave two characterizations regarding the existence of approximative K-atomic decompositions in Banach spaces. Also some results on the existence of approximative K-atomic decompositions are obtained. We discuss several methods to construct approximative K-atomic decomposition for Banach Spaces. Further, approximative d-frame and approximative d-Bessel sequence are introduced and studied. Two necessary conditions are given under which an approximative d-Bessel sequence and approximative d-frame give rise to a bounded operator with respect to which there is an approximative K-atomic decomposition. Example and counter example are provided to support our concept. Finally, a possible application is given.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yunan Cui ◽  
Yujia Zhan

As is well known, the extreme points and strongly extreme points play important roles in Banach spaces. In this paper, the criterion for strongly extreme points in Orlicz spaces equipped with s-norm is given. We complete solved criterion-Orlicz space that generated by Orlicz function. And the sufficient and necessary conditions for middle point locally uniformly convex in Orlicz spaces equipped with s-norm are obtained.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 638
Author(s):  
Yekini Shehu ◽  
Aviv Gibali

In this paper, we give a general inertial Krasnoselskii–Mann algorithm for solving inclusion problems in Banach Spaces. First, we establish a weak convergence in real uniformly convex and q-uniformly smooth Banach spaces for finding fixed points of nonexpansive mappings. Then, a strong convergence is obtained for the inertial generalized forward-backward splitting method for the inclusion. Our results extend many recent and related results obtained in real Hilbert spaces.


2020 ◽  
Vol 9 (3) ◽  
pp. 681-690
Author(s):  
Khairul Saleh ◽  
Hafiz Fukhar-ud-din

Abstract In this work, we propose an iterative scheme to approach common fixed point(s) of a finite family of generalized multi-valued nonexpansive mappings in a CAT(0) space. We establish and prove convergence theorems for the algorithm. The results are new and interesting in the theory of $$CAT\left( 0\right) $$ C A T 0 spaces and are the analogues of corresponding ones in uniformly convex Banach spaces and Hilbert spaces.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3275-3287 ◽  
Author(s):  
Mihaela Petric ◽  
Boyan Zlatanov

We generalize the p - summing contractions maps. We found sufficient conditions for these new type of maps, that ensure the existence and uniqueness of best proximity points in uniformly convex Banach spaces. We apply the result for Kannan and Chatterjea type cyclic contractions and we obtain sufficient conditions for these maps, that ensure the existence and uniqueness of best proximity points in uniformly convex Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document