scholarly journals Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: impact on catalytic performance toward the cinnamaldehyde hydrogenation

2021 ◽  
pp. 118303
Author(s):  
Carmen Ciotonea ◽  
Alexandru Chirieac ◽  
Brandusa Drago ◽  
Jeremy Dhainaut ◽  
Maya Marinova ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1259
Author(s):  
Ana Franco ◽  
Rafael Luque ◽  
Carolina Carrillo-Carrión

Biomass-derived materials are put forward as eco-friendly alternatives to design heterogeneous catalysts. To contribute in this field, we explored the potential of mesoporous biogenic silica (RH-Silica) obtained from lignocellulosic waste, in particular from rice husk, as an inorganic support to prepare heterogenized iron oxide-based catalysts. Mechanochemistry, considered as a green and sustainable technique, was employed to synthetize iron oxide nanoparticles in pure hematite phase onto the biosilica (α-Fe2O3/RH-Silica), making this material a good candidate to perform catalyzed organic reactions. The obtained material was characterized by different techniques, and its catalytic activity was tested in the selective oxidation of styrene under microwave irradiation. α-Fe2O3/RH-Silica displayed a good catalytic performance, achieving a conversion of 45% under optimized conditions, and more importantly, with a total selectivity to benzaldehyde. Furthermore, a good reusability was achieved without decreasing its activity after multiple catalytic cycles. This work represents a good example of using sustainable approaches and green materials as alternatives to conventional methods in the production of high-added value products.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 362
Author(s):  
Marta Stucchi ◽  
Maela Manzoli ◽  
Filippo Bossola ◽  
Alberto Villa ◽  
Laura Prati

To obtain selective hydrogenation catalysts with low noble metal content, two carbon-supported Mo-Pt bimetallic catalysts have been synthesized from two different molybdenum precursors, i.e., Na2MoO4 and (NH4)6Mo7O24. The results obtained by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) combined with the presence and strength of acid sites clarified the different catalytic behavior toward cinnamaldehyde hydrogenation. After impregnating the carbon support with Mo precursors, each sample was used either as is or treated at 400 °C in N2 flow, as support for Pt nanoparticles (NPs). The heating treatment before Pt deposition had a positive effect on the catalytic performance. Indeed, TEM analyses showed very homogeneously dispersed Pt NPs only when they were deposited on the heat-treated Mo/C supports, and XPS analyses revealed an increase in both the exposure and reduction of Pt, which was probably tuned by different MoO3/MoO2 ratios. Moreover, the different acid properties of the catalysts resulted in different selectivity.


2020 ◽  
Vol 10 (7) ◽  
pp. 2020-2028
Author(s):  
Long Pu ◽  
Hua Fan ◽  
Vivek Maheshwari

By controlling the spatial distribution of elements using a simple self-assembly process, the catalytic performance can be enhanced.


2020 ◽  
Vol 49 (4) ◽  
pp. 1191-1199 ◽  
Author(s):  
Zhida Liu ◽  
Liangmin Ning ◽  
Kaiyuan Wang ◽  
Lixi Feng ◽  
Wen Gu ◽  
...  

In recent years, attributed to the excellent catalytic performance of precious metal materials, metal nanoparticles@MOF catalyst has been a popular research direction.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Mohamed E. Assal ◽  
Mufsir Kuniyil ◽  
Mohammed Rafi Shaik ◽  
Mujeeb Khan ◽  
Abdulrahman Al-Warthan ◽  
...  

Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7) were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1) and 390.6 turnover frequency (TOF). The specific activity obtained is the highest so far (to the best of our knowledge) compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Roushown Ali ◽  
S. F. Adil ◽  
Abdulrahman Al-warthan ◽  
M. Rafiq H. Siddiqui

Catalytic activity of copper-manganese mixed oxide nanoparticles (Cu/Mn = 1 : 2) prepared by coprecipitation method has been studied for selective oxidation of benzyl alcohol using molecular oxygen as an oxidizing agent. The copper-manganese (CuMn2) oxide catalyst exhibited high specific activity of 15.04 mmolg−1 h−1in oxidation of benzyl alcohol in toluene as solvent. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a short reaction period at 102°C. It was found that the catalytic performance is dependent on calcination temperature, and best activity was obtained for the catalyst calcined at 300°C. The high catalytic performance of the catalyst can be attributed to the formation of active MnO2phase or absence of less active Mn2O3phase in the mixed CuMn2oxide. The catalyst has been characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett-Teller (BET) surface area measurement, and Fourier transform infrared (FT-IR) spectroscopies.


Sign in / Sign up

Export Citation Format

Share Document