Low carbohydrate intake only shows a larger decrease in body weight and fat percentage in the presence of high protein intake

Appetite ◽  
2009 ◽  
Vol 52 (3) ◽  
pp. 859
Author(s):  
S. Soenen ◽  
M.S. Westerterp-Plantenga
2021 ◽  
Vol 27 (1) ◽  
pp. 041-052
Author(s):  
Wittawas Sajjapong ◽  
◽  
Preeya Leelahagul ◽  
Sitha Pongphibool ◽  
Narupon Thongsuk ◽  
...  

Introduction: Many underweight males take commercial protein supplements to increase their body weight and build muscle. Nonetheless, commercial protein supplements may cause adverse effects. This study aimed to determine the effects of resistance training exercise combined with a high protein diet on body weight and muscle mass in underweight adolescent males. Methods: A repeated measures design study was conducted on nine males aged 12-15 years with low body weight. Energy and protein requirements were calculated, and energy and protein consumptions were measured for each meal during the high protein diet without exercise (HP) period and the high protein diet with resistance exercise (HPE) period. Subjects engaged in three resistance training sessions each week during HP-E period, for eight weeks. Dietary intake, body composition, blood biochemistry, physical fitness, and self-esteem were assessed. Results: In HP-E period, resistance training exercise combined with a high protein intake (2.14 g/kg/d) increased body weight and lean tissue mass (LTM) by 0.5 kg and 0.5 kg, respectively. Resistance training during HP-E period increased arm, leg, and trunk muscle strength by 20.2%, 7.2%, and 14.5%, respectively, more than high protein diet alone during HP period. High protein intake in HP-E period did not affect blood urea nitrogen (BUN) and creatinine levels (11.0 mg/dL and 0.70 mg/dL, respectively). Conclusion: Eight weeks of resistance training combined with a high protein diet increased body weight and LTM without adverse effects. In particular, resistance exercise predominantly increased muscle strength. Kidney function was not affected by high protein consumption throughout this study.


2020 ◽  
Vol 123 (9) ◽  
pp. 1056-1067
Author(s):  
Jonathan J. Hew ◽  
Roxanne J. Parungao ◽  
Kevin H.-Y. Tsai ◽  
Huaikai Shi ◽  
Duncan Ma ◽  
...  

AbstractNutritional therapy is a cornerstone of burns management. The optimal macronutrient intake for wound healing after burn injury has not been identified, although high-energy, high-protein diets are favoured. The present study aimed to identify the optimal macronutrient intake for burn wound healing. The geometric framework (GF) was used to analyse wound healing after a 10 % total body surface area contact burn in mice ad libitum fed one of the eleven high-energy diets, varying in macronutrient composition with protein (P5−60 %), carbohydrate (C20−75 %) and fat (F20−75 %). In the GF study, the optimal ratio for wound healing was identified as a moderate-protein, high-carbohydrate diet with a protein:carbohydrate:fat (P:C:F) ratio of 1:4:2. High carbohydrate intake was associated with lower mortality, improved body weight and a beneficial pattern of body fat reserves. Protein intake was essential to prevent weight loss and mortality, but a protein intake target of about 7 kJ/d (about 15 % of energy intake) was identified, above which no further benefit was gained. High protein intake was associated with delayed wound healing and increased liver and spleen weight. As the GF study demonstrated that an initial very high protein intake prevented mortality, a very high-protein, moderate-carbohydrate diet (P40:C42:F18) was specifically designed. The dynamic diet study was also designed to combine and validate the benefits of an initial very high protein intake for mortality, and subsequent moderate protein, high carbohydrate intake for optimal wound healing. The dynamic feeding experiment showed switching from an initial very high-protein diet to the optimal moderate-protein, high-carbohydrate diet accelerated wound healing whilst preventing mortality and liver enlargement.


2003 ◽  
Vol 28 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M S Westerterp-Plantenga ◽  
M P G M Lejeune ◽  
I Nijs ◽  
M van Ooijen ◽  
E M R Kovacs

2011 ◽  
Vol 81 (23) ◽  
pp. 134-142 ◽  
Author(s):  
Jean-Philippe Bonjour

Adequate nutrition plays an important role in the development and maintenance of bone structures resistant to usual mechanical stresses. In addition to calcium in the presence of an adequate supply of vitamin D, dietary proteins represent key nutrients for bone health and thereby function in the prevention of osteoporosis. Several studies point to a positive effect of high protein intake on bone mineral density or content. This fact is associated with a significant reduction in hip fracture incidence, as recorded in a large prospective study carried out in a homogeneous cohort of postmenopausal women. Low protein intake (< 0.8 g/kg body weight/day) is often observed in patients with hip fractures and an intervention study indicates that following orthopedic management, protein supplementation attenuates post-fracture bone loss, tends to increase muscle strength, and reduces medical complications and rehabilitation hospital stay. There is no evidence that high protein intake per se would be detrimental for bone mass and strength. Nevertheless, it appears reasonable to avoid very high protein diets (i. e. more than 2.0 g/kg body weight/day) when associated with low calcium intake (i. e. less than 600 mg/day). In the elderly, taking into account the attenuated anabolic response to dietary protein with ageing, there is concern that the current dietary protein recommended allowance (RDA), as set at 0.8 g/kg body weight/day, might be too low for the primary and secondary prevention of fragility fractures.


Critical Care ◽  
2017 ◽  
Vol 21 (1) ◽  
Author(s):  
Olav Rooyackers ◽  
Martin Sundström Rehal ◽  
Felix Liebau ◽  
Åke Norberg ◽  
Jan Wernerman

2009 ◽  
Vol 20 (8) ◽  
pp. 1797-1804 ◽  
Author(s):  
Nynke Halbesma ◽  
Stephan J.L. Bakker ◽  
Desiree F. Jansen ◽  
Ronald P. Stolk ◽  
Dick De Zeeuw ◽  
...  

2020 ◽  
Vol 20 (07) ◽  
pp. 16984-16996
Author(s):  
MMC Anyakudo ◽  
◽  
DO Adeniji ◽  

The metabolic response to nutrient ingestion and the rate of digestion and absorption of nutrient molecules in bowel physiology plays an important role in the metabolic control of some human chronic non-infectious diseases. This experimentally-controlled designed nutritional study which lasted eight weeks aimed to determine the effects of proportional high-protein/low-carbohydrate (HP/LC) formulated diet on glycemic tolerance, glycemic control, body weight, organ weight and organ morphometry in healthy and diabetic adult male Wistar rats. Twenty-four male Wistar rats purchased from a disease-free stock were randomly categorized into four groups (n = 6, each) after two weeks acclimatization period in raised stainless steel cages with 6 mm2mesh floor and replaceable numbered blotters papers placed under each cage in a well-ventilated animal house. Animal groups include: Healthy control group (HC), Healthy treated group (HT), Diabetic control group (DC) and Diabetic treated group (DT. The animals were fed according to the experimental design with water ad libitumfor eight weeks. Diabetes was inducted with freshly prepared alloxan monohydrate solution (150 mg/kg bw, intraperitoneally). Body weights and fasting blood sugar concentrations were measured twice weekly, while oral glucose tolerance test was conducted on the last day of the eighth-week study and subsequently followed by organs extraction after anesthesia for weight and gross assessment. Proportional high-protein/low-carbohydrate formulated diet caused significant reduction in mean body weight of treated diabetic (DT: 22.6%; P= .001) and healthy (HT: 5.8%; P= .007) rats while the control animals on control diet recorded significant (P< .05) increase in body weight gain (DC: 12.4%; HC: 11.2%). Glycemic tolerance and control improved significantly in diabetic treated rats over that of the healthy treated rats. Gross morphometry of the extracted organs (kidneys, liver, heart, lungs, spleen and testes) revealed sustained normal morphological features without any visible lesion. In conclusion, consumption of proportional high-protein/low-carbohydrate formulated diet enhanced body weight reduction and sustained normal organ morphological features with good glycemic tolerance and control in experimental rats, suggesting its dietary potentiality, safety and suitability to ameliorate obesity-related diabetes.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Wolfgang H. Hartl ◽  
Philipp Kopper ◽  
Andreas Bender ◽  
Fabian Scheipl ◽  
Andrew G. Day ◽  
...  

Abstract Background Proteins are an essential part of medical nutrition therapy in critically ill patients. Guidelines almost universally recommend a high protein intake without robust evidence supporting its use. Methods Using a large international database, we modelled associations between the hazard rate of in-hospital death and live hospital discharge (competing risks) and three categories of protein intake (low: < 0.8 g/kg per day, standard: 0.8–1.2 g/kg per day, high: > 1.2 g/kg per day) during the first 11 days after ICU admission (acute phase). Time-varying cause-specific hazard ratios (HR) were calculated from piece-wise exponential additive mixed models. We used the estimated model to compare five different hypothetical protein diets (an exclusively low protein diet, a standard protein diet administered early (day 1 to 4) or late (day 5 to 11) after ICU admission, and an early or late high protein diet). Results Of 21,100 critically ill patients in the database, 16,489 fulfilled inclusion criteria for the analysis. By day 60, 11,360 (68.9%) patients had been discharged from hospital, 4,192 patients (25.4%) had died in hospital, and 937 patients (5.7%) were still hospitalized. Median daily low protein intake was 0.49 g/kg [IQR 0.27–0.66], standard intake 0.99 g/kg [IQR 0.89– 1.09], and high intake 1.41 g/kg [IQR 1.29–1.60]. In comparison with an exclusively low protein diet, a late standard protein diet was associated with a lower hazard of in-hospital death: minimum 0.75 (95% CI 0.64, 0.87), and a higher hazard of live hospital discharge: maximum HR 1.98 (95% CI 1.72, 2.28). Results on hospital discharge, however, were qualitatively changed by a sensitivity analysis. There was no evidence that an early standard or a high protein intake during the acute phase was associated with a further improvement of outcome. Conclusions Provision of a standard protein intake during the late acute phase may improve outcome compared to an exclusively low protein diet. In unselected critically ill patients, clinical outcome may not be improved by a high protein intake during the acute phase. Study registration ID number ISRCTN17829198


2002 ◽  
Vol 25 (4) ◽  
pp. 261-268 ◽  
Author(s):  
R. Bellomo ◽  
H. K. Tan ◽  
S. Bhonagiri ◽  
I. Gopal ◽  
J. Seacombe ◽  
...  

Aims To study the effect of combined continuous veno-venous hemodiafiltration (CVVHDF) and high (2.5 g/kg/day) parenteral amino acid supplementation on nitrogen balance, amino acid losses and azotemic control in a cohort of patients with severe acute renal failure (ARF). Methods We administered 2.5 grams/kg/day of amino acids intravenously to seven critically ill patients with ARF. We obtained paired blood and ultrafiltrate (UF) samples (n=20) and calculated amino acid clearances and losses, nitrogen balance, protein catabolic rate and total nitrogen losses. Results The median total serum amino acid concentration was high at 5.2 mmol/L with particularly high concentrations of ornithine, lysine, and phenylalanine, but a low level of histidine. The median overall amino acid clearance was 18.6 ml/min (range: 12 to 29 ml/min). UF losses as percentage of administered dose were high for tyrosine (53.6 %) but low for methionine (3.0 %) and arginine (2.3 %). A positive nitrogen balance was achieved in 7 (35%) of the 20 study days with an overall median nitrogen balance of -1.8 g/day. Urea levels were maintained at a median of 26.6 mmol/L. Conclusions High protein intake increases the serum concentrations of most amino acids. Such protein supplementation, when coupled with CVVHDF, achieves a slightly negative overall nitrogen balance in extremely catabolic patients while still allowing adequate azotemic control.


Sign in / Sign up

Export Citation Format

Share Document