Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease

2019 ◽  
Vol 139 ◽  
pp. 104092 ◽  
Author(s):  
Hanen Dhouib ◽  
Imen Zouari ◽  
Dorra Ben Abdallah ◽  
Lassaad Belbahri ◽  
Wafa Taktak ◽  
...  
2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


1958 ◽  
Vol 36 (3) ◽  
pp. 297-299 ◽  
Author(s):  
W. Newton ◽  
M. C. J. van Adrichem

The F1 generation of selfed plants of Fragaria chiloensis, F. ovalis, and F. yukonensis contained seedlings resistant to the verticillium wilt disease. Selfed F. orientalis plants yielded seedlings that carried considerable tolerance but selfed F. vesca, F. bracteata, and F. virginiana plants yielded neither tolerant nor resistant seedlings. Asexually propagated plants of the seven species were all susceptible to the disease.


Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Sy Dinh Nguyen ◽  
Thi Huyen Trang Trinh ◽  
Trung Dzung Tran ◽  
Tinh Van Nguyen ◽  
Hoang Van Chuyen ◽  
...  

Black pepper (Piper nigrum L.) is one of the most important crops and global demand continues to increase, giving it a high export value. However, black pepper cultivation has been seriously affected by a number of pathogenic diseases. Among them, “quick wilt” caused by Phytophthora sp., “slow decline” caused by Fusarium sp., and root-knot nematode Meloidogyne sp. have a serious negative effect on black pepper growth and productivity. There have been different chemical and biological methods applied to control these diseases, but their effectiveness has been limited. The aim of this research was to evaluate different combinations of rhizosphere bacteria and endophytic bacteria isolated from black pepper farms in the Central Highland of Vietnam for their ability to suppress pathogens and promote black pepper growth and yield. Formula 6, containing the strains Bacillus velezensis KN12, Bacillus amyloliquefaciens DL1, Bacillus velezensis DS29, Bacillus subtilis BH15, Bacillus subtilis V1.21 and Bacillus cereus CS30 exhibited the largest effect against Phytophthora and Fusarium in the soil and in the roots of black pepper. These bio-products also increased chlorophyll a and b contents, which led to a 1.5-fold increase of the photosynthetic intensity than the control formula and a 4.5% increase in the peppercorn yield (3.45 vs. 3.30 tons per hectare for the control). Our results suggest that the application of rhizosphere and endophytic bacteria is a promising method for disease control and growth-promotion of black pepper.


1967 ◽  
Vol 20 (2) ◽  
pp. 475 ◽  
Author(s):  
TC Somers ◽  
AF Harrison

Apricot trees often recover from the "black heart" disease incited by the fungus Verticillium albo-atrum Reinke & Berthold, and a characteristic of such resistant trees is that the infected wood becomes dark brown to black in colour (Dufrenoy and Dufrenoy 1927). The fungus dies 1-6 months after it has colonized the wood (Taylor 1963). Analysis of total phenolics by the Folin-Denis assay showed an approximate fivefold increase (to about 60 mgjg wood) compared with that of uninfected wood of the same branch, and suggested their involvement in disease resistance mechanisms.


2019 ◽  
Vol 48 (4) ◽  
pp. 1185-1192
Author(s):  
Sadettin Çelik ◽  
Adem Bardak ◽  
Oktay Erdoğan

Screening of upland cotton genotypes against Verticillium wilt disease was conducted. The 268 upland cotton genotypes (Carmen and Acala Maxxa cultivar were tolerant- control while cvs. Cukurova 1518 and Acala SJ2 were susceptible-control) were screened against defoliating (PYDV6) and non-defoliating (Vd11) pathotypes of the fungus in a randomized plot design with four replications in growth chamber. Field experiment was established according to the augmented experimental design. Variance analysis was significant (p ≤ 0.05) for all traits against Verticillium wilt. Cvs. Semerkant Uzbek and Taskent 6 were more tolerant than the tolerant-control cultivars against both pathotypes. Most of the genotypes were tolerant in field trial in terms of disease severity that was the lowest for STN K311 genotype in both periods. The highest seed cotton yield was obtained in genotypes as BA119, Okra 204, H-23, Gedera-5, PI 528420 and Acala Royale, which were moderately tolerant to the wilt disease.


2020 ◽  
Vol 8 (5) ◽  
pp. 678
Author(s):  
Surachat Sibponkrung ◽  
Takahiko Kondo ◽  
Kosei Tanaka ◽  
Panlada Tittabutr ◽  
Nantakorn Boonkerd ◽  
...  

The objective of this research was to evaluate the PGPR effect on nodulation and nitrogen-fixing efficiency of soybean (Glycine max (L.) Merr.) by co-inoculation with Bradyrhizobium diazoefficiens USDA110. Co-inoculation of Bacillus velezensis S141 with USDA110 into soybean resulted in enhanced nodulation and N2-fixing efficiency by producing larger nodules. To understand the role of S141 on soybean and USDA110 symbiosis, putative genes related to IAA biosynthesis were disrupted, suggesting that co-inoculation of USDA110 with S141ΔyhcX reduces the number of large size nodules. It was revealed that yhcX may play a major role in IAA biosynthesis in S141 as well as provide a major impact on soybean growth promotion. The disruption of genes related to cytokinin biosynthesis and co-inoculation of USDA110 with S141ΔIPI reduced the number of very large size nodules, and it appears that IPI might play an important role in nodule size of soybean–Bradyrhizobium symbiosis. However, it was possible that not only IAA and cytokinin but also some other substances secreted from S141 facilitate Bradyrhizobium to trigger bigger nodule formation, resulting in enhanced N2-fixation. Therefore, the ability of S141 with Bradyrhizobium co-inoculation to enhance soybean N2-fixation strategy could be further developed for supreme soybean inoculants.


Plants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 120 ◽  
Author(s):  
Mohammad K. Hassan ◽  
John A. McInroy ◽  
Jarrod Jones ◽  
Deepak Shantharaj ◽  
Mark R. Liles ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) are increasingly used in crops worldwide. While selected PGPR strains can reproducibly promote plant growth under controlled greenhouse conditions, their efficacy in the field is often more variable. Our overall aim was to determine if pectin or orange peel (OP) amendments to Bacillus velezensis (Bv) PGPR strains could increase soybean growth and nodulation by Bradyrhizobium japonicum in greenhouse and field experiments to reduce variability. The treatments included untreated soybean seeds planted in field soil that contained Bv PGPR strains and non-inoculated controls with and without 0.1% (w/v) pectin or (1 or 10 mg/200 μL) orange peel (OP) amendment. In greenhouse and field tests, 35 and 55 days after planting (DAP), the plants were removed from pots, washed, and analyzed for treatment effects. In greenhouse trials, the rhizobial inoculant was not added with Bv strains and pectin or OP amendment, but in the field trial, a commercial B. japonicum inoculant was used with Bv strains and pectin amendment. In the greenhouse tests, soybean seeds inoculated with Bv AP193 and pectin had significantly increased soybean shoot length, dry weight, and nodulation by indigenous Bradyrhizobium compared to AP193 without pectin. In the field trial, pectin with Bv AP193 significantly increased the shoot length, dry weight, and nodulation of a commercial Bradyrhizobium japonicum compared to Bv AP193 without pectin. In greenhouse tests, OP amendment with AP193 at 10 mg significantly increased the dry weight of shoots and roots compared to AP193 without OP amendment. The results demonstrate that pectin-rich amendments can enhance Bv-mediated soybean growth promotion and nodulation by indigenous and inoculated B. japonicum.


Sign in / Sign up

Export Citation Format

Share Document