Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides

2016 ◽  
Vol 152 ◽  
pp. 149-155 ◽  
Author(s):  
Stefanie Duchow ◽  
Renate I. Dahlke ◽  
Thomas Geske ◽  
Wolfgang Blaschek ◽  
Birgit Classen
Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Ana D. Simonović ◽  
Milana M. Trifunović-Momčilov ◽  
Biljana K. Filipović ◽  
Marija P. Marković ◽  
Milica D. Bogdanović ◽  
...  

Centaurium erythraea (centaury) is a traditionally used medicinal plant, with a spectrum of secondary metabolites with confirmed healing properties. Centaury is an emerging model in plant developmental biology due to its vigorous regenerative potential and great developmental plasticity when cultured in vitro. Hereby, we review nearly two decades of research on somatic embryogenesis (SE) in centaury. During SE, somatic cells are induced by suitable culture conditions to express their totipotency, acquire embryogenic characteristics, and eventually give rise to somatic embryos. When SE is initiated from centaury root explants, the process occurs spontaneously (on hormone-free medium), directly (without the callusing phase), and the somatic embryos are of unicellular origin. SE from leaf explants has to be induced by plant growth regulators and is indirect (preceded by callusing). Histological observations and culture conditions are compared in these two systems. The changes in antioxidative enzymes were followed during SE from the leaf explants. Special focus is given to the role of arabinogalactan proteins during SE, which were analyzed using a variety of approaches. The newest and preliminary results, including centaury transcriptome, novel potential SE markers, and novel types of arabinogalactan proteins, are discussed as perspectives of centaury research.


2020 ◽  
Vol 21 (21) ◽  
pp. 8126
Author(s):  
Michał Kuczak ◽  
Ewa Kurczyńska

Changes in the composition of the cell walls are postulated to accompany changes in the cell’s fate. We check whether there is a relationship between the presence of selected pectic, arabinogalactan proteins (AGPs), and extensins epitopes and changes in cell reprogramming in order to answer the question of whether they can be markers accompanying changes of cell fate. Selected antibodies were used for spatio-temporal immunolocalization of wall components during the induction of somatic embryogenesis. Based on the obtained results, it can be concluded that (1) the LM6 (pectic), LM2 (AGPs) epitopes are positive markers, but the LM5, LM19 (pectic), JIM8, JIM13 (AGPs) epitopes are negative markers of cells reprogramming to the meristematic/pluripotent state; (2) the LM8 (pectic), JIM8, JIM13, LM2 (AGPs) and JIM11 (extensin) epitopes are positive markers, but LM6 (pectic) epitope is negative marker of cells undergoing detachment; (3) JIM4 (AGPs) is a positive marker, but LM5 (pectic), JIM8, JIM13, LM2 (AGPs) are negative markers for pericycle cells on the xylem pole; (4) LM19, LM20 (pectic), JIM13, LM2 (AGPs) are constitutive wall components, but LM6, LM8 (pectic), JIM4, JIM8, JIM16 (AGPs), JIM11, JIM12 and JIM20 (extensins) are not constitutive wall components; (5) the extensins do not contribute to the cell reprogramming.


Planta Medica ◽  
2015 ◽  
Vol 81 (12/13) ◽  
pp. 1169-1174 ◽  
Author(s):  
Stefanie Duchow ◽  
Wolfgang Blaschek ◽  
Birgit Classen

2014 ◽  
Vol 32 (2) ◽  
pp. 170-179 ◽  
Author(s):  
Hernando Criollo ◽  
Margarita Perea ◽  
Mariano Toribio ◽  
Johanna Muñoz

Lulo is a species of great importance to the fruticulture of Colombia, but has significant phytosanitary problems that require an aggressive breeding program oriented toward the production of genotypes with tolerance to phytopathogens. These programs need to establish highly efficient mass plant propagation protocols, such as somatic embryogenesis. This study focused on research on the somatic embryogenesis of lulo using kinetin, naphthalene acetic acid-NAA (Plant Growth Regulators, PGRs), and different sucrose concentrations in a MS medium. Two lulo varieties, Solanum quitoense var. septentrionale and S. quitoense var. quitoense, and two explant types (hypocotyl and cotyledon) were used, incubated in dark conditions at 25±2°C. The highest production percentage of the embryos was obtained when 50 mM of NAA were added to the medium with sucrose (50.0 and 263.1 mM) for the two explant types used. In lulo with spines, the highest percentage of embryonic structures (50%) was observed with cotyledonary leaf explants and 50 mM of NAA ; while in the spineless lulo, the embryonic structures were observed in the same type of explant with 50 mM of NAA + 263.1 mM of sucrose (32%).


2000 ◽  
Vol 14 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Krit Raemakers ◽  
Evert Jacobsen ◽  
Richard Visser

Sign in / Sign up

Export Citation Format

Share Document