scholarly journals Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers

Chemosphere ◽  
2020 ◽  
Vol 260 ◽  
pp. 127542
Author(s):  
Karl Fent ◽  
Tiffany Haltiner ◽  
Petra Kunz ◽  
Verena Christen
2014 ◽  
pp. 67-86
Author(s):  
Mary R. Myerscough ◽  
James R. Edwards ◽  
Timothy M. Schaerf
Keyword(s):  

2020 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


2020 ◽  
Author(s):  
Manuel A. Giannoni-Guzmán ◽  
Emmanuel Rivera ◽  
Janpierre Aleman-Rios ◽  
Alexander M. Melendez Moreno ◽  
Melina Perez Ramos ◽  
...  

AbstractHoney bees utilize their circadian rhythms to accurately predict the time of day. This ability allows foragers to remember the specific timing of food availability and its location for several days. Previous studies have provided strong evidence toward light/dark cycles being the primary Zeitgeber for honey bees. Recent work in our laboratory described large individual variation in the endogenous period length of honey bee foragers from the same colony and differences in the endogenous rhythms under different constant temperatures. In this study, we further this work by examining temperature inside the honey bee colony. By placing temperature and light data loggers at different locations inside the colony we uncovered that temperature oscillates with a 24-hour period at the periphery of the colony. We then simulated this temperature oscillation in the laboratory and found that using the temperature cycle as a Zeitgeber, foragers present large individual differences in the phase of locomotor rhythms with respect to temperature. Moreover, foragers successfully entrain to these simulated temperature cycles and advancing the cycle by six hours, resulted in changes in the phase of locomotor activity for the most foragers in the assay. The results shown in this study highlight the importance of temperature as a potential Zeitgeber in the field. Future studies will examine the possible functional and evolutionary role of the observed phase differences of circadian rhythms.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 863
Author(s):  
İrem Akülkü ◽  
Saleh Ghanem ◽  
Elif Filiztekin ◽  
Guntima Suwannapong ◽  
Christopher Mayack

There are multiple feedback mechanisms involved in appetite regulation, which is an integral part of maintaining energetic homeostasis. Older forager honey bees, in comparison to newly emerged bees and nurse bees, are known to have highly fluctuating hemolymph trehalose levels, higher appetite changes due to starvation, and higher octopamine levels in the brain. What remains unknown is if the hemolymph trehalose and octopamine levels interact with one another and how this varies as the bee ages. We manipulated trehalose and octopamine levels across age using physiological injections and found that nurse and forager bees increase their appetite levels due to increased octopamine levels in the brain. This is further enhanced by lower trehalose levels in the hemolymph. Moreover, nurse bees with high octopamine levels in the brain and low trehalose levels had the same appetite levels as untreated forager bees. Our findings suggest that the naturally higher levels of octopamine as the bee ages may result in higher sensitivity to fluctuating trehalose levels in the hemolymph that results in a more direct way of assessing the energetic state of the individual. Consequently, forager bees have a mechanism for more precise regulation of appetite in comparison to newly emerged and nurse bees.


2019 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 348 ◽  
Author(s):  
Hiroki Kohno ◽  
Takeo Kubo

The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.


2017 ◽  
Vol 30 (6) ◽  
pp. 728-740 ◽  
Author(s):  
Marisol Amaya-Márquez ◽  
Charles I. Abramson ◽  
Harrington Wells

Sign in / Sign up

Export Citation Format

Share Document