mushroom bodies
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 70)

H-INDEX

62
(FIVE YEARS 6)

PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001459
Author(s):  
Show Inami ◽  
Tomohito Sato ◽  
Yuto Kurata ◽  
Yuki Suzuki ◽  
Toshihiro Kitamoto ◽  
...  

Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs.


Zoomorphology ◽  
2021 ◽  
Author(s):  
Patrick Beckers ◽  
Carla Pein ◽  
Thomas Bartolomaeus

AbstractMushroom bodies are known from annelids and arthropods and were formerly assumed to argue for a close relationship of these two taxa. Since molecular phylogenies univocally show that both taxa belong to two different clades in the bilaterian tree, similarity must either result from convergent evolution or from transformation of an ancestral mushroom body. Any morphological differences in the ultrastructure and composition of mushroom bodies could thus indicate convergent evolution that results from similar functional constraints. We here study the ultrastructure of the mushroom bodies, the glomerular neuropil, glia-cells and the general anatomy of the nervous system in Sthenelais boa. The neuropil of the mushroom bodies is composed of densely packed, small diameter neurites that lack individual or clusterwise glia enwrapping. Neurites of other regions of the brain are much more prominent, are enwrapped by glia-cell processes and thus can be discriminated from the neuropil of the mushroom bodies. The same applies to the respective neuronal somata. The glomerular neuropil of insects and annelids is a region of higher synaptic activity that result in a spheroid appearance of these structures. However, while these structures are sharply delimited from the surrounding neuropil of the brain by glia enwrapping in insects, this is not the case in Sthenelais boa. Although superficially similar, there are anatomical differences in the arrangement of glia-cells in the mushroom bodies and the glomerular neuropil between insects and annelids. Hence, we suppose that the observed differences rather evolved convergently to solve similar functional constrains than by transforming an ancestral mushroom body design.


2021 ◽  
Author(s):  
Francisca Rojo-Cortes ◽  
Victoria Tapia-Valladares ◽  
Nicolas Fuenzalida-Uribe ◽  
Sergio Hidalgo ◽  
Candy B. Roa ◽  
...  

Drosophila melanogaster Lipophorin Receptors, LpR1 and LpR2, mediate lipid uptake. The orthologs of these receptors in vertebrates, ApoER2 and VLDL-R, bind Reelin, a glycoprotein not present in flies. These receptors are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain. It is currently unknown whether LpRs play similar roles in the Drosophila brain. We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the Mushroom Bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurites. This effect depends on LpRs and Dab, the Drosophila ortholog of the reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin. Overall, these findings demonstrate that LpRs contribute to MB development and function, supporting the existence of LpR-dependent signaling in Drosophila.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001412
Author(s):  
Jenifer C. Kaldun ◽  
Shahnaz R. Lone ◽  
Ana M. Humbert Camps ◽  
Cornelia Fritsch ◽  
Yves F. Widmer ◽  
...  

Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aβ42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aβ42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aβ peptides.


2021 ◽  
Author(s):  
Cody A Freas ◽  
Antoine Wystrach ◽  
Sebastian Schwarz ◽  
Marcia A Spetch

Many ant species are able to establish routes between goal locations by learning views of the surrounding visual panorama. Route formation models have, until recently, focused on the use of attractive view memories, which experienced foragers orient towards to return to the nest or known food sites. However, aversive views have recently been uncovered as a key component of route learning. Here, Cataglyphis velox rapidly learned aversive views, when associated with a negative outcome, a period of captivity in brush, triggering an increase in hesitation behavior. These memories were based on the accumulation of experiences over multiple trips with each new experience regulating foragers hesitancy. Foragers were also sensitive to captivity time differences, suggesting they possess some mechanism to quantify duration. Finally, we characterized foragers perception of risky (variable) versus stable aversive outcomes by associating two sites along the homeward route with two distinct schedules, a fixed duration of captivity or a variable captivity duration, with the same mean time over training. Foragers exhibited significantly less hesitation to the risky outcome compared to the fixed, indicating they perceived risky outcomes as less severe. Results align with a logarithmic relationship between captivity duration and hesitation response, suggesting that foragers perception of the aversive stimulus is a logarithm of its actual value. We conclude by characterizing how view memory and risk perception can be executed within the mushroom bodies neural circuitry.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009383
Author(s):  
Roman Goulard ◽  
Cornelia Buehlmann ◽  
Jeremy E. Niven ◽  
Paul Graham ◽  
Barbara Webb

Insects can navigate efficiently in both novel and familiar environments, and this requires flexiblity in how they are guided by sensory cues. A prominent landmark, for example, can elicit strong innate behaviours (attraction or menotaxis) but can also be used, after learning, as a specific directional cue as part of a navigation memory. However, the mechanisms that allow both pathways to co-exist, interact or override each other are largely unknown. Here we propose a model for the behavioural integration of innate and learned guidance based on the neuroanatomy of the central complex (CX), adapted to control landmark guided behaviours. We consider a reward signal provided either by an innate attraction to landmarks or a long-term visual memory in the mushroom bodies (MB) that modulates the formation of a local vector memory in the CX. Using an operant strategy for a simulated agent exploring a simple world containing a single visual cue, we show how the generated short-term memory can support both innate and learned steering behaviour. In addition, we show how this architecture is consistent with the observed effects of unilateral MB lesions in ants that cause a reversion to innate behaviour. We suggest the formation of a directional memory in the CX can be interpreted as transforming rewarding (positive or negative) sensory signals into a mapping of the environment that describes the geometrical attractiveness (or repulsion). We discuss how this scheme might represent an ideal way to combine multisensory information gathered during the exploration of an environment and support optimal cue integration.


Author(s):  
Arián Avalos ◽  
Ian M. Traniello ◽  
Eddie Pérez Claudio ◽  
Tugrul Giray

Visual learning is vital to the behavioral ecology of the Western honey bee (Apis mellifera). Honey bee workers forage for floral resources, a behavior that requires the learning and long-term memory of visual landmarks, but how these memories are mapped to the brain remains poorly understood. To address this gap in our understanding, we collected bees that successfully learned visual associations in a conditioned aversion paradigm and compared gene expression correlates of memory formation in the mushroom bodies, a higher-order sensory integration center classically thought to contribute to learning, as well as the optic lobes, the primary visual neuropil responsible for sensory transduction of visual information. We quantitated expression of CREB and CaMKii, two classical genetic markers of learning and fen-1, a gene specifically associated with punishment learning in vertebrates. As expected, we report substantial involvement of the mushroom bodies for all three markers but additionally demonstrate the involvement of the optic lobes across a similar time course. Our findings imply the molecular involvement of a sensory neuropil during visual associative learning parallel to a higher-order brain region, furthering our understanding of how a tiny brain processes environmental signals.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ludwik Gąsiorowski ◽  
Aina Børve ◽  
Irina A. Cherneva ◽  
Andrea Orús-Alcalde ◽  
Andreas Hejnol

Abstract Background The brain anatomy in the clade Spiralia can vary from simple, commissural brains (e.g., gastrotrichs, rotifers) to rather complex, partitioned structures (e.g., in cephalopods and annelids). How often and in which lineages complex brains evolved still remains unclear. Nemerteans are a clade of worm-like spiralians, which possess a complex central nervous system (CNS) with a prominent brain, and elaborated chemosensory and neuroglandular cerebral organs, which have been previously suggested as homologs to the annelid mushroom bodies. To understand the developmental and evolutionary origins of the complex brain in nemerteans and spiralians in general, we investigated details of the neuroanatomy and gene expression in the brain and cerebral organs of the juveniles of nemertean Lineus ruber. Results In the juveniles, the CNS is already composed of all major elements present in the adults, including the brain, paired longitudinal lateral nerve cords, and an unpaired dorsal nerve cord, which suggests that further neural development is mostly related with increase in the size but not in complexity. The ultrastructure of the juvenile cerebral organ revealed that it is composed of several distinct cell types present also in the adults. The 12 transcription factors commonly used as brain cell type markers in bilaterians show region-specific expression in the nemertean brain and divide the entire organ into several molecularly distinct areas, partially overlapping with the morphological compartments. Additionally, several of the mushroom body-specific genes are expressed in the developing cerebral organs. Conclusions The dissimilar expression of molecular brain markers between L. ruber and the annelid Platynereis dumerilii indicates that the complex brains present in those two species evolved convergently by independent expansions of non-homologous regions of a simpler brain present in their last common ancestor. Although the same genes are expressed in mushroom bodies and cerebral organs, their spatial expression within organs shows apparent differences between annelids and nemerteans, indicating convergent recruitment of the same genes into patterning of non-homologous organs or hint toward a more complicated evolutionary process, in which conserved and novel cell types contribute to the non-homologous structures.


2021 ◽  
Author(s):  
Carlotta Pribbenow ◽  
Yi-chun Chen ◽  
Michael-Marcel Heim ◽  
Desiree Laber ◽  
Silas Reubold ◽  
...  

In vertebrates, memory-relevant synaptic plasticity involves postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons (MBONs) for appetitive memory induction, but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression downstream of α5 and the postsynaptic scaffold protein Dlg. We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.


Sign in / Sign up

Export Citation Format

Share Document