Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space

2011 ◽  
Vol 16 (9) ◽  
pp. 3639-3645 ◽  
Author(s):  
Wei Jiang ◽  
Yingzhen Lin
2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Baiqing Sun ◽  
Kun Tang ◽  
Hongmei Zhang ◽  
Shan Xiong

Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.


Author(s):  
Wei Jiang ◽  
Zhong Chen ◽  
Ning Hu ◽  
Yali Chen

AbstractIn recent years, the study of fractional differential equations has become a hot spot. It is more difficult to solve fractional differential equations with nonlocal boundary conditions. In this article, we propose a multiscale orthonormal bases collocation method for linear fractional-order nonlocal boundary value problems. In algorithm construction, the solution is expanded by the multiscale orthonormal bases of a reproducing kernel space. The nonlocal boundary conditions are transformed into operator equations, which are involved in finding the collocation coefficients as constrain conditions. In theory, the convergent order and stability analysis of the proposed method are presented rigorously. Finally, numerical examples show the stability, accuracy and effectiveness of the method.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1264
Author(s):  
Vladimir V. Uchaikin ◽  
Renat T. Sibatov ◽  
Dmitry N. Bezbatko

One-dimensional random walks with a constant velocity between scattering are considered. The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be different for positive and negative directions of the walk axis. Several special cases are considered when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin for a symmetric random walk with exponential path distribution and its generalization to the asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.


Author(s):  
CAIXIA DENG ◽  
YULING QU ◽  
LIJUAN GU

In this paper, Journe wavelet function is introduced as a wavelet generating function. The expression of reproducing kernel function for the image space of this wavelet transform is obtained based on the fact that the image space of the wavelet transform is a reproducing kernel Hilbert space. Then the isometric identity of Journe wavelet transform is obtained. The connections between the image space of the wavelet transform and the image space of the known reproducing kernel space are established by the theories of reproducing kernel. The properties and the structures of the image space of the wavelet transform can be characterized by the properties and the structures of the image space of the known reproducing kernel space. Using the ideas of reproducing kernel, we consider there are relations between the wavelet transform and the sampling theorem. Meanwhile, the approximations in sampling theorems is shown and the truncation error is given. This provides a theoretical basis for us to study the image space of the general wavelet transform and broadens the scope of application of theories of the reproducing kernel space.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Changbo He ◽  
Xueqin Lv ◽  
Jing Niu

An efficient computational method is given in order to solve the systems of nonlinear infinite-delay-differential equations (IDDEs) with proportional delays. Representation of the solution and an iterative method are established in the reproducing kernel space. Some examples are displayed to demonstrate the computation efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document