Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model

2011 ◽  
Vol 50 (8) ◽  
pp. 2488-2492 ◽  
Author(s):  
M. Asle Zaeem ◽  
H. El Kadiri ◽  
P.T. Wang ◽  
M.F. Horstemeyer
2007 ◽  
Vol 558-559 ◽  
pp. 1101-1106 ◽  
Author(s):  
Kyung Jun Ko ◽  
Pil Ryung Cha ◽  
Jong Tae Park ◽  
Jae Kwan Kim ◽  
Nong Moon Hwang

Phase-field model (PFM) in multiple orientation fields was used to simulate the grain growth in three-dimensions (3-D) for isotropic and anisotropic grain boundary energy. In the simulation, the polycrystalline microstructure was described by a set of non-conserved order parameters and each order parameter describes each orientation of grains. For isotropic grain boundary energy, the simulation showed the microstructure evolution of normal grain growth. For anisotropic grain boundary energy, however, the simulation showed that certain grains which share a high fraction of low energy grain boundaries with other grains have a high probability to grow by wetting along triple junctions and can grow abnormally with a growth advantage of solid-state wetting. The PFM simulation shows the realistic microstructural evolution of island and peninsular grains during abnormal grain growth by solid-state wetting.


2011 ◽  
Vol 172-174 ◽  
pp. 1084-1089 ◽  
Author(s):  
Tae Wook Heo ◽  
Saswata Bhattacharyya ◽  
Long Qing Chen

A phase-field model is described for predicting the diffusional phase transformation process in elastically inhomogeneous polycrystals. The elastic interactions are incorporated by solving the mechanical equilibrium equation using the Fourier-spectral iterative-perturbation scheme taking into account elastic modulus inhomogeneity. A number of examples are presented, including grain boundary segregation, precipitation of second-phase particles in a polycrystal, and interaction between segregation at a grain boundary and coherent precipitates inside grains. It is shown that the local pressure distribution due to coherent precipitates leads to highly inhomogeneous solute distribution along grain boundaries.


2012 ◽  
Vol 715-716 ◽  
pp. 776-781
Author(s):  
Santidan Biswas ◽  
Indradev Samajdar ◽  
Arunansu Haldar ◽  
Anirban Sain

The microstructure of a material determines its mechanical properties. Since microstructure can be tailored by thermo-mechanical processing of the metal, it is important to understand how the microstructure evolves under thermo-mechanical processing. We have constructed a phase field formalism to study recrystallization and grain growth in polycrystalline material. A unique feature of our model is that the Euler Angles (φ1,φ,φ2), obtained from Electron Back Scattered Diffraction (EBSD) data of a polycrystalline sample can be taken as an input to our model. In our model, the grain orientations at discrete grid points are represented by a non-conserved vector field, namely a quaternion. The free energy used for the evolution of the local orientations contains bulk energy for various preferred grain types and grain boundary energy. The grain orientations evolve in time following a Langevin dynamics. So far we have established that the rate of grain growth follows the usual L ~ t1/2scaling law when the grain boundary energy is independent of the misorientation angle between neighboring grains. Work on other aspects of this model is in progress.


2020 ◽  
Vol 993 ◽  
pp. 953-958
Author(s):  
Yan Wu ◽  
Ren Chuang Yan ◽  
Er Wei Qin ◽  
Wei Dong Chen

In this paper, the effect of grain boundary energy in AZ31 Mg alloy with multi-order parameters phenomenological phase field model has been discussed during the progress of recrystallization. The average grain size of the recrystallization grain at a certain temperature and a certain restored energy but various grain boundary energies have been studied, and the simulated results show that the larger the grain boundary energy is, the larger the average grain size will be, and the speed of grain growth will increase with the increase of grain boundary energy. Additionally, temperature will also increase the grain growth rate.


2020 ◽  
Vol 29 (12) ◽  
pp. 128201
Author(s):  
Yu-Hao Song ◽  
Ming-Tao Wang ◽  
Jia Ni ◽  
Jian-Feng Jin ◽  
Ya-Ping Zong

2013 ◽  
Vol 741 ◽  
pp. 3-6 ◽  
Author(s):  
Wen Quan Zhou ◽  
Ying Juna Gao ◽  
Yao Liu ◽  
Zhi Rong Luo ◽  
Chuang Gao Huang

The phase field method was applied to study the effect of second-phase particles (SPP) with different geometric orientations and shapes on grain growth. The results show that, in the grain growth process, most of the spherical second-phase particles located at triple junctions, while the stick SPPs located at the grain boundaries along the grain boundary. The second-phase particles are of the strong pinning effect on grain boundary and the limiting grain radius can be expressed by Zener relations. In the condition of the second-phase particles area fraction and size remaining the same, the stick SPPs are of more effective pinning on grain growth than that for spherical SPPs, and the orientation of disk second-phase particles is also an influence factor for pinning effect. Stick second-phase particles with multiple orientations can make a better pining effect than those with only one orientation.


Sign in / Sign up

Export Citation Format

Share Document