Effect of Grain Boundary Energy in Recrystallization Simulation by Phase Field Method

2020 ◽  
Vol 993 ◽  
pp. 953-958
Author(s):  
Yan Wu ◽  
Ren Chuang Yan ◽  
Er Wei Qin ◽  
Wei Dong Chen

In this paper, the effect of grain boundary energy in AZ31 Mg alloy with multi-order parameters phenomenological phase field model has been discussed during the progress of recrystallization. The average grain size of the recrystallization grain at a certain temperature and a certain restored energy but various grain boundary energies have been studied, and the simulated results show that the larger the grain boundary energy is, the larger the average grain size will be, and the speed of grain growth will increase with the increase of grain boundary energy. Additionally, temperature will also increase the grain growth rate.

2012 ◽  
Vol 715-716 ◽  
pp. 776-781
Author(s):  
Santidan Biswas ◽  
Indradev Samajdar ◽  
Arunansu Haldar ◽  
Anirban Sain

The microstructure of a material determines its mechanical properties. Since microstructure can be tailored by thermo-mechanical processing of the metal, it is important to understand how the microstructure evolves under thermo-mechanical processing. We have constructed a phase field formalism to study recrystallization and grain growth in polycrystalline material. A unique feature of our model is that the Euler Angles (φ1,φ,φ2), obtained from Electron Back Scattered Diffraction (EBSD) data of a polycrystalline sample can be taken as an input to our model. In our model, the grain orientations at discrete grid points are represented by a non-conserved vector field, namely a quaternion. The free energy used for the evolution of the local orientations contains bulk energy for various preferred grain types and grain boundary energy. The grain orientations evolve in time following a Langevin dynamics. So far we have established that the rate of grain growth follows the usual L ~ t1/2scaling law when the grain boundary energy is independent of the misorientation angle between neighboring grains. Work on other aspects of this model is in progress.


2007 ◽  
Vol 558-559 ◽  
pp. 1101-1106 ◽  
Author(s):  
Kyung Jun Ko ◽  
Pil Ryung Cha ◽  
Jong Tae Park ◽  
Jae Kwan Kim ◽  
Nong Moon Hwang

Phase-field model (PFM) in multiple orientation fields was used to simulate the grain growth in three-dimensions (3-D) for isotropic and anisotropic grain boundary energy. In the simulation, the polycrystalline microstructure was described by a set of non-conserved order parameters and each order parameter describes each orientation of grains. For isotropic grain boundary energy, the simulation showed the microstructure evolution of normal grain growth. For anisotropic grain boundary energy, however, the simulation showed that certain grains which share a high fraction of low energy grain boundaries with other grains have a high probability to grow by wetting along triple junctions and can grow abnormally with a growth advantage of solid-state wetting. The PFM simulation shows the realistic microstructural evolution of island and peninsular grains during abnormal grain growth by solid-state wetting.


1998 ◽  
Vol 13 (10) ◽  
pp. 2819-2832 ◽  
Author(s):  
Russell B. Rogenski ◽  
Kenneth H. Sandhage ◽  
Alexander L. Vasiliev ◽  
Eric P. Kvam

The grain growth of dense, fine-grained Nd1+xBa2−xCu3Oy (x = 0.1−0.4) specimens has been examined in pure O2(g) at 938 °C and 967 °C. No detectable change in average grain size was observed for Nd1.4Ba1.6Cu3Oy within 72 h at 967 °C; however, a significant increase in average grain size developed between 18 and 24 h at 967 °C for Nd1.3Ba1.7Cu3Oy, and within 8−12 h at ≤967 °C for Nd1.2Ba1.8Cu3Oy and Nd1.1Ba1.9Cu3Oy. Microstructural analyses revealed that sudden changes in average grain size coincided with the formation of relatively large (abnormal) grains. A broadening of the grain size distribution was also observed. TEM analyses revealed that grain boundaries were free of second phases. The possible role of anisotropy in grain boundary energy and/or mobility on grain growth is discussed.


2007 ◽  
Vol 558-559 ◽  
pp. 1177-1181 ◽  
Author(s):  
Philippe Schaffnit ◽  
Markus Apel ◽  
Ingo Steinbach

The kinetics and topology of ideal grain growth were simulated using the phase-field model. Large scale phase-field simulations were carried out where ten thousands grains evolved into a few hundreds without allowing coalescence of grains. The implementation was first validated in two-dimensions by checking the conformance with square-root evolution of the average grain size and the von Neumann-Mullins law. Afterwards three-dimensional simulations were performed which also showed fair agreement with the law describing the evolution of the mean grain size against time and with the results of S. Hilgenfeld et al. in 'An Accurate von Neumann's Law for Three-Dimensional Foams', Phys. Rev. Letters, 86(12)/2685, March 2001. Finally the steady state grain size distribution was investigated and compared to the Hillert theory.


2016 ◽  
Vol 724 ◽  
pp. 8-11
Author(s):  
Chun Yu Teng ◽  
Yun Fu ◽  
Zhan Yong Ren ◽  
Yong Hong Li ◽  
Yun Wang ◽  
...  

The properties of alloys depend on its microstructure, such as the size of grains. In general, the balanced mechanical properties of alloys can be obtained with small grain size. While the grain size of alloys may increases under heat treatment, thermal mechanical processing and service condition of high temperature, i.e., the grain growth is inevitable. The effort of most research is to control the rate of grain growth and avoid abnormal grain growth. For example, pinning the grain boundary and reduce its mobility with the second phase particles in order to prevent grain growth. Therefore, the properties of the alloys will not decreases dramatically and the structure retains a high degree of integrity. The details of grain growth with particle pinning were investigated by phase field simulations in the present paper. It is found that, with the same size of pinning particles, the pinning effect increases with the increases of the pinning particle number. With the same pinning particle number, the pinning effect increases with the increases of pinning particle size. Under the same total volume of pinning particles while different particle size and number, the pinning effect is complicated and it will be discussed in details. The pinning effect decreases with the increases of grain boundary energy. These findings could shed light on the understanding of the grain growth kinetics with particle pinning.


Author(s):  
Hyun-Kyu Kim ◽  
Seong Gyoon Kim ◽  
Weiping Dong ◽  
Ingo Steinbach ◽  
Byeong-Joo Lee

Sign in / Sign up

Export Citation Format

Share Document