The mechanism of ductile deformation in ductile regime machining of 6H SiC

2015 ◽  
Vol 98 ◽  
pp. 178-188 ◽  
Author(s):  
Gaobo Xiao ◽  
Suet To ◽  
Guoqing Zhang
Author(s):  
Fan Guochuan ◽  
Sun Zhongshi

Under influence of ductile shear deformation, granulite facies mineral paragenesis underwent metamorphism and changes in chemical composition. The present paper discusses some changes in chemical composition of garnet in hypers thene_absent felsic gnesiss and of hypersthene in rock in early and late granulite facies undergone increasing ductile shear deformation .In garnet fetsic geniss, band structures were formed because of partial melting and resulted in zoning from massive⟶transitional⟶melanocrate zones in increasing deformed sequence. The electron-probe analyses for garnet in these zones are listed in table 1 . The Table shows that Mno, Cao contents in garnet decrease swiftly from slightly to intensely deformed zones.In slightly and moderately deformed zones, Mgo contents keep unchanged and Feo is slightly lower. In intensely deformed zone, Mgo contents increase, indicating a higher temperature. This is in accord with the general rule that Mgo contents in garnet increase with rising temperature.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Byung-Choon Lee ◽  
Weon-Seo Kee ◽  
Uk-Hwan Byun ◽  
Sung-Won Kim

In this study, petrological, structural, geochemical, and geochronological analyses of the Statherian alkali feldspar granite and porphyritic alkali feldspar granite in the southwestern part of the Korean Peninsula were conducted to examine petrogenesis of the granitoids and their tectonic setting. Zircon U-Pb dating revealed that the two granites formed around 1.71 Ga and 1.70–1.68 Ga, respectively. The results of the geochemical analyses showed that both of the granites have a high content of K2O, Nb, Ta, and Y, as well as high FeOt/MgO and Ga/Al ratios. Both granites have alkali-calcic characteristics with a ferroan composition, indicating an A-type affinity. Zircon Lu-Hf isotopic compositions yielded negative εHf(t) values (−3.5 to −10.6), indicating a derivation from ancient crustal materials. Both granite types underwent ductile deformation and exhibited a dextral sense of shear with a minor extension component. Based on field relationships and zircon U-Pb dating, it was considered that the deformation event postdated the emplacement of the alkali feldspar granite and terminated soon after the emplacement of the porphyritic alkali feldspar granite in an extensional setting. These data indicated that there were extension-related magmatic activities accompanying ductile deformation in the southwestern part of the Korean Peninsula during 1.71–1.68 Ga. The Statherian extension-related events are well correlated with those in the midwestern part of the Korean and eastern parts of the North China Craton.


Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1127-1130 ◽  
Author(s):  
Gabriel G. Meyer ◽  
Nicolas Brantut ◽  
Thomas M. Mitchell ◽  
Philip G. Meredith

Abstract The so-called “brittle-ductile transition” is thought to be the strongest part of the lithosphere, and defines the lower limit of the seismogenic zone. It is characterized not only by a transition from localized to distributed (ductile) deformation, but also by a gradual change in microscale deformation mechanism, from microcracking to crystal plasticity. These two transitions can occur separately under different conditions. The threshold conditions bounding the transitions are expected to control how deformation is partitioned between localized fault slip and bulk ductile deformation. Here, we report results from triaxial deformation experiments on pre-faulted cores of Carrara marble over a range of confining pressures, and determine the relative partitioning of the total deformation between bulk strain and on-fault slip. We find that the transition initiates when fault strength (σf) exceeds the yield stress (σy) of the bulk rock, and terminates when it exceeds its ductile flow stress (σflow). In this domain, yield in the bulk rock occurs first, and fault slip is reactivated as a result of bulk strain hardening. The contribution of fault slip to the total deformation is proportional to the ratio (σf − σy)/(σflow − σy). We propose an updated crustal strength profile extending the localized-ductile transition toward shallower regions where the strength of the crust would be limited by fault friction, but significant proportions of tectonic deformation could be accommodated simultaneously by distributed ductile flow.


2003 ◽  
Vol 18 (9) ◽  
pp. 2039-2049 ◽  
Author(s):  
Jun Lu ◽  
Guruswami Ravichandran

An experimental study of the inelastic deformation of bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 under multiaxial compression using a confining sleeve technique is presented. In contrast to the catastrophic shear failure (brittle) in uniaxial compression, the metallic glass exhibited large inelastic deformation of more than 10% under confinement, demonstrating the nature of ductile deformation under constrained conditions in spite of the long-range disordered characteristic of the material. It was found that the metallic glass followed a pressure (p) dependent Tresca criterion τ = τ0 + βp, and the coefficient of the pressure dependence β was 0.17. Multiple parallel shear bands oriented at 45° to the loading direction were observed on the surfaces of the deformed specimens and were responsible for the overall inelastic deformation.


2007 ◽  
Vol 339 ◽  
pp. 395-399 ◽  
Author(s):  
Ming Zhou ◽  
X.D. Liu ◽  
S.N. Huang

Soda-lime glass is a typical brittle material, which is difficult to realize ductile-regime machining by using conventional cutting technology due to the extremely small critical depth of cut. In this work, the micro-deformation characteristics of this kind of materials were analyzed by micro indentation. Ultrasonic vibration assisted diamond cutting was performed in order to investigate the effect of tool vibration on material removal process and surface quality. The profiles of cut surfaces were measured and compared with those obtained by conventional diamond cutting. Real depths of cut in ultrasonic vibration cutting correspond well with the nominal ones. The change in the tribology of the cutting process as well as the alteration of the deformation mechanism of the work material might be responsible for the reduction in tool wear in vibration cutting.


2021 ◽  
Author(s):  
Xuemei Cheng ◽  
Shuyun Cao

<p>Within orogenic zone and continental extensional area, it often developed metamorphic complex or metamorphic gneiss dome that widely exposed continental mid-lower crustal rocks, which is an ideal place to study exhumation processes of deep-seated metamorphic complex and rheology. The Yuanmou metamorphic complex is located in the south-central part of the "Kangdian Axis" in the western margin of Qiangtang Block and Yangtze Block, which is a part of the anticline of the Sichuan-Yunnan platform. Many research works mainly focus on the discussion of intrusion ages, aeromagnetic anomalies, and polymetallic deposits. However, the exhumation process and mechanism of the Yuanmou metamorphic complex are rarely discussed and still unclear. This study, based on detailed field geological observations, optical microscopy (OM), cathodoluminescence (CL), electron backscatter diffraction (EBSD) and electron probe (EMPA) were performed to illustrate the geological structure features, deformation-metamorphic evolution process and its tectonic significance of Yuanmou metamorphic complex during the exhumation process. All these analysis results indicate that the Yuanmou metamorphic complex generally exhibits a dome structure with deep metamorphic rocks and deformed rocks of varying degrees widely developed. Mylonitic gneiss and granitic intrusions are located in the footwall of the Yuanmou, which have suffered high-temperature shearing. The mylonitic fabrics and mineral stretching lineations in the deformed rock are strongly developed, forming typical S-L or L-shaped structural features. The high-temperature ductile deformation-metamorphism environment is high amphibolite facies, that is, the temperature range is between 620 ~ 690 ℃ and the pressure is between 0.8 ~ 0.95 Gpa. In the deformed rocks closed to the detachment fault, some of the mylonite fabric features are retained, but most of them have experienced a strongly overprinted retrogression metamorphism and deformation. At the top of the detachment fault zone, it is mainly composed of cataclasites and fault gouge. The comprehensive macro- and microstructural characteristics, geometry, kinematics, and mineral (amphibole, quartz and calcite) EBSD textures indicate that the Yuanmou metamorphic complex has undergone a progressive exhumation process during regional extension, obvious high-temperature plastic deformation-metamorphism in the early stage, and superimposed of low-temperature plastic-brittle and brittle deformation in the subsequent stage, which is also accompanied by strong fluid activities during the exhumation process.</p>


2021 ◽  
Author(s):  
Camilo Andrés Conde Carvajal ◽  
Cristhian Bolívar Riascos Rodríguez ◽  
Michael Andres Avila Paez ◽  
Andreas Kammer

<p>Among the foreland belts of the Andean mountain system, the Eastern Cordillera of Colombia (EC) represents a unique example of an isolated, bi-vergent mountain belt. In contrast, to block tectonics of broken foreland basins, it displays a ductile deformation style which involves two mountain fronts with a structural relief of the order of 10 km. Internal parts of the EC have been shortened by buckling at high and a homogeneously strained basement at deeper structural levels. These deformation patterns likely attest to conditions of a thermally weakened backarc setting. Two opposed scenarios have been postulated for its surface uplift and consequent exhumation: 1) an E-migrating deformation front and the formation of progressively forward breaking faults; and 2) the pop-up of a weak crustal welt enclosed by strong foreland blocks. In this latter setting, a synchronous early formation of marginal mountain fronts and a late-stage surface uplift of a central domain may be anticipated. These two constellations compare, in terms of a contrasting model setup, to a foreland migrating orogenic wedge or a relatively stable, doubly vergent wedge formed above a structural discontinuity or rheologic boundaries that acted as sites for the nucleation of the marginal faults.</p><p>In this contribution, we opt to examine the “boundary” conditions for the development of a doubly vergent wedge formed at the tip line of a rigid tapering backstop, that simulates a rigid foreland block. With respect to the shape of this backstop, we examine the effects of tip angles less than the angle of internal friction (<30°) and find, that at a low tip angle of 10° the pop-up evolves above a forward-breaking principal kink-band with the synchronous formation of a sequence of conjugate back-kinks that cut into the sand pack, as it is pushed toward the backstop. At a moderate tip angle of 20<sup>o </sup>the forward-breaking kink-band is slightly steeper than the backstop and gives rise to a frontal fold with an overturned limb. This latter geometrical configuration loosely compares to the structural relations of a structural section through the high plains of Bogotá, where the eastern mountain front defines a strongly deformed antiform, that is juxtaposed against an undeformed margin of the adjacent Guyana shield.</p>


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Ane K. Engvik ◽  
Heinrich Taubald ◽  
Arne Solli ◽  
Tor Grenne ◽  
Håkon Austrheim

New stable isotopic data from mineral separates of albite, scapolite, amphibole, quartz, and calcite of metasomatic rocks (Bamble lithotectonic domain) give increased knowledge on fluid type, source, and evolution during metamorphism. Albite from a variety of albitites givesδ18OSMOWvalues of 5.1–11.1‰, while quartz from clinopyroxene-bearing albitite gives 11.5–11.6‰.δ18OSMOWvalues for calcite samples varies between 3.4 and 12.4‰and shows more consistentδ13C values of −4.6 to-6.0‰. Amphibole from scapolite metagabbro yields aδ18OSMOWvalue of 4.3 to 6.7‰andδDSMOWvalue of −84 to −50‰, while the scapolite givesδ18OSMOWvalues in the range of 7.4 to10.6‰. These results support the interpretation that the original magmatic rocks were metasomatised by seawater solutions with a possible involvement from magmatic fluids. Scapolitisation and albitisation led to contrasting chemical evolution with respect to elements like P, Ti, V, Fe, and halogens. The halogens deposited as Cl-scapolite were dissolved by albitisation fluid and reused as a ligand for metal transport. Many of the metal deposits in the Bamble lithotectonic domain, including Fe-ores, rutile, and apatite deposits formed during metasomatism. Brittle to ductile deformation concurrent with metasomatic infiltration illustrates the dynamics and importance of metasomatic processes during crustal evolution.


Sign in / Sign up

Export Citation Format

Share Document