Monte Carlo analytical-geometrical simulation of piezoresistivity and electrical conductivity of polymeric nanocomposites filled with hybrid carbon nanotubes/graphene nanoplatelets

Author(s):  
M. Haghgoo ◽  
R. Ansari ◽  
M.K. Hassanzadeh-Aghdam
2018 ◽  
Vol 44 (4) ◽  
pp. 4508-4511 ◽  
Author(s):  
Aminul Islam ◽  
Biswajyoti Mukherjee ◽  
M. Sribalaji ◽  
O.S. Asiq Rahman ◽  
P. Arunkumar ◽  
...  

2018 ◽  
Vol 57 (4) ◽  
Author(s):  
Ieva Kranauskaitė ◽  
Jan Macutkevič ◽  
Anna Borisova ◽  
Alfonso Martone ◽  
Mauro Zarrelli ◽  
...  

The need of high performance integrated circuits and high power density communication devices drives the development of materials enhancing the conductive performances by carbon nanoparticles. Among nanocomposites, the ternary hybrid carbon nanotubes/graphene nanoplatelets/polymer composites represent a debatable route to enhance the transport performances. In this study hybrid ternary nanocomposites were manufactured by direct mixing of multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) at a fixed filler content (0.3 wt.%), but different relative combination, within an epoxy system. MWNT/epoxy nanocomposites were manufactured for comparison. The quality of dispersion was evaluated by optical and scanning electron microscopy (SEM). The electrical properties of hybrid composites were measured in the temperature range from 30 up to 300 K. The synergic combination of 1D/2D particles did not interfere with the percolative behaviour of MWCNTs but improved the overall electrical performances. The addition of a small amount of GNPs (0.05 wt.%) led to a strong increment of the sample conductivity over all the temperature range, compared to that of mono filler systems.


2012 ◽  
Vol 101 (21) ◽  
pp. 211903 ◽  
Author(s):  
Ke Chu ◽  
Wen-sheng Li ◽  
Cheng-chang Jia ◽  
Fu-ling Tang

Author(s):  
Amirhossein Biabangard Oskouyi ◽  
Uttandaraman Sundararaj ◽  
Pierre Mertiny

The effect of the temperature on the electrical resistivity of polymer nanocomposites with carbon nanotube (CNT) and graphene nanoplatelets (GNP) fillers was investigated. A three-dimensional (3D) continuum Monte Carlo (MC) model was developed to first form percolation networks. A 3D resistor network was subsequently created to evaluate the nanocomposite electrical properties. The effect of temperature on the electrical resistivity of nanocomposites was thus investigated. Other aspects such as polymer tunneling and filler resistivities were considered as well. The presented comprehensive modeling approach is aimed at providing a better understanding of the electrical resistivity behavior of polymer nanocomposites in conjunction with experimental works.


Author(s):  
Nanzhu Zhao 1 ◽  
Yongha Kim 1 ◽  
Joseph H. Koo 1

High electrical and thermal conductivity associated with high stiffness and strength offer tremendous opportunities to the development of a series of carbon nanotube incorporated composite materials for a variety of applications. In particular, a small amount of carbon fibers or carbon nanotubes in a non-conductive polymer will transform a composite into a conductive material, which reveals superb potential of their future application in electronic devices. The relation between the amount of carbon nanotubes in a polymer and the electrical conductivity of it can be studied experimentally as well as theoretically with various simulation models. A three-dimensional (3D) Monte Carlo simulation model using resistance network formation was developed to study the relation between the electrical conductivity of the polymer nanocomposite and the amount of carbon nanotubes dispersed in it. In this model, carbon nanotubes were modeled as curvy cylindrical nanotubes with various lengths and fixed tube diameter, all of which were randomly distributed in a non-conductive constrained volume, which represents polymer. The model can be used to find the volumetric electrical resistance of a constrained cubic structure by forming a comprehensive resistance network among all of the nanotubes in contact. As more and more nanotubes were added into the volume, the electrical conductivity of the volume increases exponentially. However, once the amount of carbon nanotubes reached about 0.1 % vt (volume percentage), electrical percolation was detected, which was consistent with the experimental results. This model can be used to estimate the electrical conductivity of the composite matrix as well as to acquire the electrical percolation threshold.


Sign in / Sign up

Export Citation Format

Share Document