scholarly journals Three-dimensional morphological changes of potato slices during the drying process

Author(s):  
Li Sun ◽  
Pengqi Zhang ◽  
Xin Zheng ◽  
Jianrong Cai ◽  
Junwen Bai
2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


2011 ◽  
Vol 312-315 ◽  
pp. 971-976 ◽  
Author(s):  
J. Barbosa da Silva ◽  
G. Silva Almeida ◽  
W.C.P. Barbosa de Lima ◽  
Gelmires Araújo Neves ◽  
Antônio Gilson Barbosa de Lima

The Aim of this Work Is to Present a Three-Dimensional Mathematical Modelling to Predict Heat and Mass Transport inside the Industrial Brick with Rectangular Holes during the Drying Including Shrinkage and Hygrothermalelastic Stress Analysis. the Numerical Solution of the Diffusion Equation, Being Used the Finite-Volume Method, Considering Constant Thermo-Physical Properties and Convective Boundary Conditions at the Surface of the Solid, it Is Presented and Analyzed. Results of the Temperature, Moisture Content and Stress Distributions, and Drying and Heating Kinetics Are Shown and Analyzed. Results of the Average Moisture Content and Surface Temperature of the Brick along the Drying Process Are Compared with Experimental Data (T = 80.0oC and RH = 4.6 %) and Good Agreement Was Obtained. it Was Verified that the Largest Temperature, Moisture Content and Stress Gradients Are Located in the Intern and External Vertexes of the Brick.


2021 ◽  
Vol 11 (8) ◽  
pp. 3357
Author(s):  
Amir Hodzic ◽  
Gabriel Bernardino ◽  
Damien Legallois ◽  
Patrick Gendron ◽  
Hélène Langet ◽  
...  

Few data exist concerning the right ventricular (RV) physiological adaptation in American-style football (ASF) athletes. We aimed to analyze the RV global and regional responses among ASF-trained athletes. Fifty-nine (20 linemen and 39 non-linemen) ASF athletes were studied before and after inter-seasonal training. During this period, which lasted 7 months, all athletes were exposed to combined dynamic and static exercises. Cardiac longitudinal changes were examined using three-dimensional transthoracic echocardiography. A computational method based on geodesic distances was applied to volumetrically parcellate the RV into apical, outlet, and inlet regions. RV global and regional end-diastolic volumes increased significantly and similarly in linemen and non-linemen after training, with predominant changes in the apex and outlet regions. RV global and regional ejection fractions were preserved. Morphological changes were uniformly distributed among the four cardiac chambers, and it was independent of the field position. Assessment of RV end-diastolic global, inlet and apical volumes showed low intra-observer (3.3%, 4.1%, and 5.3%, respectively) and inter-observer (7%, 12.2%, and 9%, respectively) variability, whereas the outlet regional volumetric assessment was less reproducible. To conclude, ASF inter-seasonal training was associated with a proportionate biventricular enlargement, regardless of the field position. Regional RV analysis allowed us to quantify the amount of exercise-induced remodeling that was larger in the apical and outlet regions.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 869 ◽  
Author(s):  
Lilian Felipe S. Tupan ◽  
Marlon I. Valerio-Cuadros ◽  
Aline Alves Oliveira ◽  
Reginaldo Barco ◽  
Flávio Francisco Ivashita ◽  
...  

Monophasic Zn1-xFexO nanoparticles with wurtzite structure were synthesized in the 0 ≤ x ≤ 0.05 concentration range using a freeze-drying process followed by heat treatment. The samples were characterized regarding their optical, structural, and magnetic properties. The analyses revealed that iron doping of the ZnO matrix induces morphological changes in the crystallites. Iron is substitutional for zinc, trivalent and distributed in the wurtzite lattice in two groups: isolated iron atoms and iron atoms with one or more neighboring iron atoms. It was also shown that the energy band gap decreases with a higher doping level. The samples are paramagnetic at room temperature, but they undergo a spin-glass transition when the temperature drops below 75 K. The magnetic frustration is attributed to the competition of magnetic interactions among the iron moments. There are a superexchange interaction and an indirect exchange interaction that is provided by the spin (and charge) itinerant carriers in a spin-polarized band situated in the vicinity of the Fermi level of the Fe-doped ZnO semiconductor. The former interaction actuates for an antiferromagnetic coupling among iron ions, whereas the latter constitutes a driving force for a ferromagnetic coupling that weakens, decreasing the temperature. Our results strongly contribute to the literature because they elucidate the controversies reported in the literature for the magnetic state of the Fe-doped ZnO system.


2012 ◽  
Vol 24 (1) ◽  
pp. 162
Author(s):  
J. R. Miles ◽  
C. N. Sargus ◽  
S. A. Plautz ◽  
J. L. Vallet ◽  
A. K. Pannier

Between Day 10 and 12 of gestation, the pig embryo elongates from a sphere to a long thin, filament. During this time, the embryo increases the production of oestrogen via an increase in steroidogenic transcripts, which is critical for maternal recognition of pregnancy. To date, attempts to elongate porcine embryos in vitro have been unsuccessful. Therefore, the objective of this study was to utilise alginate hydrogels to establish a culture system that promotes in vitro embryo elongation with a corresponding increase in steroidogenic transcripts and oestradiol production. In 3 replicate collections, White crossbred gilts (n = 15) were bred at Day 0 of the oestrous cycle. At Day 9 of gestation, reproductive tracts were collected and flushed with RPMI-1640 containing antibiotics. Embryos were recovered, grouped according to size and washed with RPMI-1640 containing antibiotics and 10% fetal bovine serum (FBS). Embryos were randomly assigned to be encapsulated using a double encapsulation technique (0.7% sodium alginate and 1.5% calcium chloride solution) or used as controls. Encapsulated and control embryos were cultured for 96 h in CO2 -pretreated RPMI-1640 containing antibiotics and 10% FBS at 38°C, 5% CO2 in air and 100% humidity. Every 24 h, the embryos were imaged and half of the media was replaced. The removed media was stored at –20°C and used to assess oestradiol levels by radioimmunoassay. At the end of culture, a subset of encapsulated and control embryos were snap frozen and used to assess the expression level of steroidogenic transcripts (STAR, CYP11 and CYP19) using quantitative PCR. All data were analysed using general linear model (GLM) procedures for ANOVA. Cell survival, assessed by blastocyst fragmentation and confirmed by live/dead staining in representative embryos, was greater (P = 0.01) for encapsulated embryos (60.1 ± 4.8%) compared with controls (33.3 ± 4.8%). Of encapsulated embryos, 27% had some morphological change (minor flattening and tubal formation) and 14% had significant morphological changes (considerable flattening and tubal formation elongating through the gel), consistent with in vivo embryo elongation. In contrast, the control embryos had no morphological changes observed and remained spherical during culture. The expression levels of STAR, CYP11 and CYP19 were significantly (P < 0.05) greater in encapsulated embryos compared with control embryos. Furthermore, a significant (P < 0.01) time-dependent increase in oestradiol levels in the culture media of encapsulated embryos was identified compared with controls and culture media alone. These results illustrate that cultured pig embryos encapsulated in alginate hydrogels undergo limited morphological changes with increased expression of steroidogenic transcripts and oestrogen production. †USDA is an equal opportunity provider and employer.


Sign in / Sign up

Export Citation Format

Share Document