scholarly journals Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone – Effect of post weld heat treatment and addition of boron carbide

2015 ◽  
Vol 11 (2) ◽  
pp. 166-173 ◽  
Author(s):  
P. Vijaya Kumar ◽  
G. Madhusudhan Reddy ◽  
K. Srinivasa Rao
Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3510 ◽  
Author(s):  
Adirek Baisukhan ◽  
Wasawat Nakkiew

The aim of this research is to investigate the sequence of processes for improving the welded surface integrity of AA7075-T651 aluminum alloy joined by friction stir welding (FSW). The improvement processes that will be investigated herein include mechanical surface improvement with deep rolling (DR) and post-weld heat treatment (PWHT). Therefore, this study investigated welded surface integrity, which comprises residual stress, microhardness, surface roughness, microstructure, and fatigue life (screening). The experiment consists of three sets of combinations. In the first set, only FSW was applied; in the second set, FSW was applied, followed by DR, and then PWHT processes (FSW-DR-PWHT); and in the last set, FSW was applied, followed by PWHT, and then DR processes (FSW-PWHT-DR). Fatigue testing was carried out by undertaking a four-point bending test using a bending stress of approximately 300 MPa with a test frequency of 2.5 Hz at room temperature and stress ratio R = 0. The study found that residual stress plays an important role in the fatigue life. Finally, the fatigue test showed that FSW workpieces subject to the PWHT process followed by the DR process (FSW-PWHT-DR) had the highest fatigue life, with an increase of 239% when compared with unprocessed FSW workpieces.


2019 ◽  
Vol 43 (2) ◽  
pp. 230-236
Author(s):  
Ashok S. Kannusamy ◽  
Ravindran Ramasamy

This paper addresses the effect of post weld heat treatment methods on the mechanical and corrosion characteristics of friction stir welded aluminum alloy AA2014-T6. Aluminum alloy AA2014 is mainly used in applications that demand high strength to weight ratios, such as aerospace, marine, and industrial applications. In this work, AA2014-T6 plates of 6 mm thick were butt welded using a tool with a square profile. Tensile strength, hardness, and corrosion characteristics were compared between the samples as welded and post weld heat treated. Welded samples that were heat treated for a shorter ageing period (8 h) showed improved tensile strength irrespective of welding process parameters, compared to as-welded samples. The samples heat treated for a longer ageing period (9 h) showed a decline in tensile strength for low tool rotation speed. Hardness increased in welded samples heat treated for 8 h. Welded samples heat treated for 9 h show high passivity in corrosion media.


2016 ◽  
Vol 25 (3-4) ◽  
pp. 89-98 ◽  
Author(s):  
C. Rajendran ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractFriction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.


2019 ◽  
Vol 61 (5-6) ◽  
pp. 305-310 ◽  
Author(s):  
C. Rajendran ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

2019 ◽  
Vol 15 ◽  
pp. 109-118
Author(s):  
K. Sri Ram Vikas ◽  
V.S.N. Venkata Ramana ◽  
Raffi Mohammed ◽  
G. Madhusudhan Reddy ◽  
KSrinivasa Rao

2015 ◽  
Vol 56 (7) ◽  
pp. 1072-1076 ◽  
Author(s):  
Jitlada Boonma ◽  
Sookkaew Khammuangsa ◽  
Kanokwan Uttarasak ◽  
Jirapan Dutchaneephet ◽  
Chatdanai Boonruang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document