scholarly journals Isomorphism classes of elliptic and hyperelliptic curves over finite fields F(2g+1)n

2004 ◽  
Vol 10 (4) ◽  
pp. 583-614 ◽  
Author(s):  
Youngju Choie ◽  
Eunkyung Jeong
2013 ◽  
Vol 12 (3) ◽  
pp. 651-676 ◽  
Author(s):  
Bryden Cais ◽  
Jordan S. Ellenberg ◽  
David Zureick-Brown

AbstractWe describe a probability distribution on isomorphism classes of principally quasi-polarized $p$-divisible groups over a finite field $k$ of characteristic $p$ which can reasonably be thought of as a ‘uniform distribution’, and we compute the distribution of various statistics ($p$-corank, $a$-number, etc.) of $p$-divisible groups drawn from this distribution. It is then natural to ask to what extent the $p$-divisible groups attached to a randomly chosen hyperelliptic curve (respectively, curve; respectively, abelian variety) over $k$ are uniformly distributed in this sense. This heuristic is analogous to conjectures of Cohen–Lenstra type for $\text{char~} k\not = p$, in which case the random $p$-divisible group is defined by a random matrix recording the action of Frobenius. Extensive numerical investigation reveals some cases of agreement with the heuristic and some interesting discrepancies. For example, plane curves over ${\mathbf{F} }_{3} $ appear substantially less likely to be ordinary than hyperelliptic curves over ${\mathbf{F} }_{3} $.


Sign in / Sign up

Export Citation Format

Share Document