rational points
Recently Published Documents


TOTAL DOCUMENTS

787
(FIVE YEARS 119)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 275 (1352) ◽  
Author(s):  
Bernhard Mühlherr ◽  
Richard Weiss ◽  
Holger Petersson

We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a “rank  2 2 ” presentation for the group of F F -rational points of an arbitrary exceptional simple group of F F -rank at least  4 4 and to determine defining relations for the group of F F -rational points of an an arbitrary group of F F -rank  1 1 and absolute type D 4 D_4 , E 6 E_6 , E 7 E_7 or E 8 E_8 associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic.


Author(s):  
EL Hadji Sow ◽  
Pape Modou Sarr ◽  
Oumar Sall

In this work, we determine the set of algebraic points of degree at most 5 on the ane curve y2 = x5 - 243. This result extends a result of J.TH Mulholland who described in [4] the set of \(\mathbb{Q}\)- rational points i.e the set of points of degree one over \(\mathbb{Q}\) on this curve.


Author(s):  
Wojciech Kucharz ◽  
Krzysztof Kurdyka

Abstract Let $X$ be a quasi-projective algebraic variety over a real closed field $R$, and let $f \colon U \to R$ be a function defined on an open subset $U$ of the set $X(R)$ of $R$-rational points of $X$. Assume that either the function $f$ is locally semialgebraic or the field $R$ is uncountable. If for every irreducible algebraic curve $C \subset X$ the restriction $f|_{U \cap C}$ is continuous and admits a rational representation, then $f$ is continuous and admits a rational representation. There are also suitable versions of this theorem with algebraic curves replaced by algebraic arcs. Heretofore, results of such a type have been known only for $R={\mathbb{R}}$. The transition from ${\mathbb{R}}$ to $R$ is not automatic at all and requires new methods.


Author(s):  
Fumiaki Suzuki

AbstractWe construct higher-dimensional Calabi–Yau varieties defined over a given number field with Zariski dense sets of rational points. We give two elementary constructions in arbitrary dimensions as well as another construction in dimension three which involves certain Calabi–Yau threefolds containing an Enriques surface. The constructions also show that potential density holds for (sufficiently) general members of the families.


2021 ◽  
Vol Volume 5 ◽  
Author(s):  
Julia Schneider ◽  
Susanna Zimmermann

We show that any infinite algebraic subgroup of the plane Cremona group over a perfect field is contained in a maximal algebraic subgroup of the plane Cremona group. We classify the maximal groups, and their subgroups of rational points, up to conjugacy by a birational map.


Author(s):  
Zongbin Chen

Abstract We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from these two approaches gives recurrence relations between the number of rational points on the fundamental domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate Arthur’s weighted orbital integrals for the groups ${\textrm {GL}}_{2}$ and ${\textrm {GL}}_{3}$ .


2021 ◽  
Vol 359 (8) ◽  
pp. 983-989
Author(s):  
Ilia Smilga
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document