Investigation of a method to estimate live fuel moisture content from satellite measurements in fire risk assessment

2006 ◽  
Vol 234 ◽  
pp. S32 ◽  
Author(s):  
Marta Yebra ◽  
Emilio Chuvieco ◽  
David Riaño
2014 ◽  
Vol 23 (5) ◽  
pp. 606 ◽  
Author(s):  
E. Chuvieco ◽  
I. Aguado ◽  
S. Jurdao ◽  
M. L. Pettinari ◽  
M. Yebra ◽  
...  

Fire risk assessment should take into account the most relevant components associated to fire occurrence. To estimate when and where the fire will produce undesired effects, we need to model both (a) fire ignition and propagation potential and (b) fire vulnerability. Following these ideas, a comprehensive fire risk assessment system is proposed in this paper, which makes extensive use of geographic information technologies to offer a spatially explicit evaluation of fire risk conditions. The paper first describes the conceptual model, then the methods to generate the different input variables, the approaches to merge those variables into synthetic risk indices and finally the validation of the outputs. The model has been applied at a national level for the whole Spanish Iberian territory at 1-km2 spatial resolution. Fire danger included human factors, lightning probability, fuel moisture content of both dead and live fuels and propagation potential. Fire vulnerability was assessed by analysing values-at-risk and landscape resilience. Each input variable included a particular accuracy assessment, whereas the synthetic indices were validated using the most recent fire statistics available. Significant relations (P < 0.001) with fire occurrence were found for the main synthetic danger indices, particularly for those associated to fuel moisture content conditions.


2021 ◽  
Author(s):  
Florian Briquemont ◽  
Akli Benali

&lt;p&gt;Large wildfires are amongst the most destructive natural disasters in southern Europe, posing a serious threat to both human lives and the environment.&lt;/p&gt;&lt;p&gt;Although wildfire simulations and fire risk maps are already very a useful tool to assist fire managers in their decisions, the complexity of fire spread and ignition mechanisms can greatly hinder their accuracy. An important step in improving the reliability of wildfire prediction systems is to implement additional drivers of fire spread and fire risk in simulation models.&lt;/p&gt;&lt;p&gt;Despite their recognized importance as factors influencing fuel flammability and fire spread, soil moisture and live fuel moisture content are rarely implemented in the simulation of large wildfires due to the lack of sufficient and accurate data. Fortunately, new satellite products are giving the opportunity to assess these parameters on large areas with high temporal and spatial resolution.&lt;/p&gt;&lt;p&gt;The purpose of this study is twofold. First, we aimed to evaluate the capabilities of satellite data to estimate soil moisture and live fuel moisture content in different landcovers.&amp;#160; Secondly, we focused on the potential of these estimates for assessing fire risk and fire spread patterns of large wildfires in Portugal. Ultimately, the goal of this study is to implement these estimated variables in fire spread simulations and fire risk maps.&lt;br&gt;&lt;br&gt;We compared datasets retrieved from Sentinel 1, SMAP (Soil Moisture Active Passive radiometer) and MODIS (Moderate Resolution Imaging Spectrometer) missions. Several estimators of LFMC based on spectral indices were tested and their patterns were compared with field data. Based on these estimators, we assessed the impact of LFMC and soil moisture on the extent and occurrence of large wildfires. Finally, we built a database of detailed historical wildfire progressions, which we used to evaluate the influence of soil moisture and LFMC on the velocity and direction of the fire spread.&lt;/p&gt;


2020 ◽  
Vol 245 ◽  
pp. 111797 ◽  
Author(s):  
Krishna Rao ◽  
A. Park Williams ◽  
Jacqueline Fortin Flefil ◽  
Alexandra G. Konings

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 887 ◽  
Author(s):  
Kaiwei Luo ◽  
Xingwen Quan ◽  
Binbin He ◽  
Marta Yebra

Previous studies have shown that Live Fuel Moisture Content (LFMC) is a crucial driver affecting wildfire occurrence worldwide, but the effect of LFMC in driving wildfire occurrence still remains unexplored over the southwest China ecosystem, an area historically vulnerable to wildfires. To this end, we took 10-years of LFMC dynamics retrieved from Moderate Resolution Imaging Spectrometer (MODIS) reflectance product using the physical Radiative Transfer Model (RTM) and the wildfire events extracted from the MODIS Burned Area (BA) product to explore the relations between LFMC and forest/grassland fire occurrence across the subtropical highland zone (Cwa) and humid subtropical zone (Cwb) over southwest China. The statistical results of pre-fire LFMC and cumulative burned area show that distinct pre-fire LFMC critical thresholds were identified for Cwa (151.3%, 123.1%, and 51.4% for forest, and 138.1%, 72.8%, and 13.1% for grassland) and Cwb (115.0% and 54.4% for forest, and 137.5%, 69.0%, and 10.6% for grassland) zones. Below these thresholds, the fire occurrence and the burned area increased significantly. Additionally, a significant decreasing trend on LFMC dynamics was found during the days prior to two large fire events, Qiubei forest fire and Lantern Mountain grassland fire that broke during the 2009/2010 and 2015/2016 fire seasons, respectively. The minimum LFMC values reached prior to the fires (49.8% and 17.3%) were close to the lowest critical LFMC thresholds we reported for forest (51.4%) and grassland (13.1%). Further LFMC trend analysis revealed that the regional median LFMC dynamics for the 2009/2010 and 2015/2016 fire seasons were also significantly lower than the 10-year LFMC of the region. Hence, this study demonstrated that the LFMC dynamics explained wildfire occurrence in these fire-prone regions over southwest China, allowing the possibility to develop a new operational wildfire danger forecasting model over this area by considering the satellite-derived LFMC product.


2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Sunisa Chaiklieng ◽  
Thawatchai Dacherngkhao ◽  
Pornnapa Suggaravetsiri ◽  
Vichai Pruktharathikul

2013 ◽  
Vol 136 ◽  
pp. 455-468 ◽  
Author(s):  
Marta Yebra ◽  
Philip E. Dennison ◽  
Emilio Chuvieco ◽  
David Riaño ◽  
Philip Zylstra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document