canopy water
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jinxia An ◽  
Guangyao Gao ◽  
Chuan Yuan ◽  
Bojie Fu

Abstract. Rainfall is known as the main water replenishment in dryland ecosystem, and rainfall partitioning by vegetation reshapes the spatial and temporal distribution patterns of rainwater entry into the soil. The dynamics of rainfall partitioning have been extensively studied at the inter-event scale, yet very few studies have explored its finer intra-event dynamics and the relating driving factors for shrubs. Here, we conducted a concurrent in-depth investigation of rainfall partitioning at inter- and intra-event scales for two typical xerophytic shrubs (Caragana korshinskii and Salix psammophila) in the Liudaogou catchment of the Loess Plateau, China. The event throughfall (TF), stemflow (SF), and interception loss (IC) and their temporal variations within the rainfall event as well as the meteorological factors and vegetation characteristics were systematically measured during the 2014–2015 rainy seasons. The C. korshinskii had significantly higher SF percentage (9.2 %) and lower IC percentage (21.4 %) compared to S. psammophila (3.8 % and 29.5 %, respectively) (p < 0.05), but their TF percentages were not significantly different (69.4 % vs. 66.7 %). At the intra-event scale, TF and SF of S. psammophila was initiated (0.1 vs. 0.3 h and 0.7 vs. 0.8 h) and peaked (1.8 vs. 2.0 h and 2.1 vs. 2.2 h) more quickly, and TF of S. psammophila lasted longer (5.2 vs. 4.8 h), delivered more intensely (4.3 vs. 3.8 mm∙h−1), whereas SF of C. korshinskii lasted longer (4.6 vs. 4.1 h), delivered more intensely (753.8 vs. 471.2 mm∙h−1). For both shrubs, rainfall amount was the most significant factor influencing inter-event rainfall partitioning, and rainfall intensity and duration controlled the intra-event TF and SF variables. The C. korshinskii with larger branch angle, more small branches and smaller canopy area, has an advantage to produce stemflow more efficiently over S. psammophila. The S. psammophila has lower canopy water storage capacity to generate and peak throughfall and stemflow earlier, and it has larger aboveground biomass and total canopy water storage of individual plant to produce higher interception loss compared to C. korshinskii. These findings contribute to the fine characterization of shrub-dominated eco-hydrological processes, and improve the accuracy of water balance estimation in dryland ecosystem.


2022 ◽  
Vol 268 ◽  
pp. 112789
Author(s):  
S. Khabbazan ◽  
S.C. Steele-Dunne ◽  
P. Vermunt ◽  
J. Judge ◽  
M. Vreugdenhil ◽  
...  
Keyword(s):  
L Band ◽  

2022 ◽  
Vol 803 ◽  
pp. 149948
Author(s):  
Yuzhe Li ◽  
Xinyuan Zhang ◽  
Zhongmin Hu ◽  
Quanqin Shao ◽  
Jiangwen Fan ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 100008
Author(s):  
Sonam Peden ◽  
Ronald C. Bradbury ◽  
David William Lamb ◽  
Mark Hedley

2021 ◽  
Vol 13 (22) ◽  
pp. 4635
Author(s):  
Rakesh Chandra Joshi ◽  
Dongryeol Ryu ◽  
Gary J. Sheridan ◽  
Patrick N. J. Lane

The conventional Land Surface Temperature (LST)–Normalized Difference Vegetation Index (NDVI) trapezoid model has been widely used to retrieve vegetation water stress. However, it has two inherent limitations: (1) its complex and computationally intensive parameterization for multi-temporal observations and (2) deficiency in canopy water content information. We tested the hypothesis that an improved water stress index could be constructed by the representation of canopy water content information to the LST–NDVI trapezoid model. Therefore, this study proposes a new index that combines three indicators associated with vegetation water stress: canopy temperature through LST, canopy water content through Surface Water Content Index (SWCI), and canopy fractional cover through NDVI in one temporally transferrable index. Firstly, a new optical space of SWCI–NDVI was conceptualized based on the linear physical relationship between shortwave infrared (SWIR) and soil moisture. Secondly, the SWCI–NDVI feature space was parameterized, and an index d(SWCI, NDVI) was computed based on the distribution of the observations in the SWCI–NDVI spectral space. Finally, standardized LST (LST/long term mean of LST) was combined to d(SWCI, NDVI) to give a new water stress index, Temperature Vegetation Water Stress Index (TVWSI). The modeled soil moisture from the Australian Water Resource Assessment—Landscape (AWRA-L) and Soil Water Fraction (SWF) from four FLUXNET sites across Victoria and New South Wales were used to evaluate TVWSI. The index TVWSI exhibited a high correlation with AWRA-L soil moisture (R2 of 0.71 with p < 0.001) and the ground-based SWF (R2 of 0.25–0.51 with p < 0.001). TVWSI predicted soil moisture more accurately with RMSE of 21.82 mm (AWRA-L) and 0.02–0.04 (SWF) compared to the RMSE ranging 28.98–36.68 mm (AWRA-L) and 0.03–0.05 (SWF) were obtained for some widely used water stress indices. The TVWSI could also be a useful input parameter for other environmental models.


2021 ◽  
Vol 4 ◽  
Author(s):  
Anna Ilek ◽  
John T. Van Stan ◽  
Karolina Morkisz ◽  
Jarosław Kucza

As the outermost layer of stems and branches, bark is exposed to the influence of atmospheric conditions, i.e., to changes in the air’s relative humidity and wetting during storms. The bark is involved in water interception by tree canopies and stemflow generation, but bark–water relations are often overlooked in ecohydrological research and insufficiently understood. Relative to other canopy ecohydrological processes, little is known about vertical variation in bark properties and their effect on bark hydrology. Thus, the objective of this study was to analyze changes in physical properties (thickness, outer to total bark thickness ratio, density, and porosity) and hydrology (bark absorbability, bark water storage capacity, and hygroscopicity) vertically along stems of Norway spruce [Picea abies (L.) Karst.] and silver fir (Abies alba Mill.) trees. Our null hypotheses were that bark hydrology is constant both with tree height and across measured physical bark properties. We found that bark thickness and the ratio of outer-to-total bark thickness decreased with tree height for both species, and this was accompanied by an increase in the bark water storage capacity. In contrast, the bark’s density, porosity, and hygroscopicity remained relatively constant along stems. These results inform ecohydrological theory on water storage capacity, stemflow initiation, and the connection between the canopy water balance and organisms that colonize bark surfaces.


2021 ◽  
Author(s):  
Paul C. Vermunt ◽  
Susan C. Steele-Dunne ◽  
Saeed Khabbazan ◽  
Jasmeet Judge ◽  
Nick C. van de Giesen

Abstract. Microwave observations are sensitive to vegetation water content (VWC). Consequently, the increasing temporal and spatial resolution of spaceborne microwave observations creates a unique opportunity to study vegetation water dynamics and its role in the diurnal water cycle. However, we currently have a limited understanding of sub-daily variations in VWC and how they affect passive and active microwave observations. This is partly due to the challenges associated with measuring internal VWC for validation, particularly non-destructively and at timescales of less than a day. In this study, we aimed to (1) use field sensors to reconstruct diurnal and continuous records of internal VWC of corn, and (2) use these records to interpret the sub-daily behaviour of a 10-day time series of polarimetric L-band backscatter with high temporal resolution. Sub-daily variations of internal VWC were calculated based on the cumulative difference between estimated transpiration and sap flow rates at the base of the stems. Destructive samples were used to constrain the estimates and for validation. The inclusion of continuous surface canopy water estimates (dew or interception) and surface soil moisture allowed us to attribute hour-to-hour backscatter dynamics to either internal VWC, surface canopy water or soil moisture variations. Our results showed that internal VWC varied with 10–20 % during the day in non-stressed conditions, and the effect on backscatter was significant. Diurnal variations of internal VWC and nocturnal dew formation affected vertically polarized backscatter most. Moreover, on a typical dry day, backscatter variations were 1.5 (HH-pol) to 3 (VV-pol) times more sensitive to VWC than to soil moisture. These results demonstrate that radar observations have the potential to provide unprecedented insight into the role of vegetation water dynamics in land-atmosphere interactions at sub-daily timescales.


2021 ◽  
Vol 4 ◽  
Author(s):  
Kate Hembre ◽  
Abigail Meyer ◽  
Tana Route ◽  
Abby Glauser ◽  
Daniel E. Stanton

Epiphytes, including bryophytes and lichens, can significantly change the water interception and storage capacities of forest canopies. However, despite some understanding of this role, empirical evaluations of canopy and bole community water storage capacity by epiphytes are still quite limited. Epiphyte communities are shaped by both microclimate and host plant identity, and so the canopy and bole community storage capacity might also be expected to vary across similar spatial scales. We estimated canopy and bole community cover and biomass of bryophytes and lichens from ground-based surveys across a temperate-boreal ecotone in continental North America (Minnesota). Multiple forest types were studied at each site, to separate stand level and latitudinal effects. Biomass was converted into potential canopy and bole community storage on the basis of water-holding capacity measurements of dominant taxa. Bole biomass and potential water storage was a much larger contributor than outer canopy. Biomass and water storage capacity varied greatly, ranging from 9 to &gt;900kg ha–1 and 0.003 to 0.38 mm, respectively. These values are lower than most reported results for temperate forests, which have emphasized coastal and old-growth forests. Variation was greatest within sites and appeared to reflect the strong effects of host tree identity on epiphyte communities, with conifer-dominated plots hosting more lichen-dominated epiphyte communities with lower potential water storage capacity. These results point to the challenges of estimating and incorporating epiphyte contributions to canopy hydrology from stand metrics. Further work is also needed to improve estimates of canopy epiphytes, including crustose lichens.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 339
Author(s):  
Scott Heffernan ◽  
Bogdan M Strimbu

Surface Canopy Water (SCW) is the intercepted rain water that resides within the tree canopy and plays a significant role in the hydrological cycle. Challenges arise in measuring SCW in remote areas using traditional ground-based techniques. Remote sensing in the radio spectrum has the potential to overcome the challenges where traditional modelling approaches face difficulties. In this study, we aim at estimating the SCW by fusing information extracted from the radar imagery acquired with the Sentinel-1 constellation, aerial laser scanning, and meteorological data. To describe the change of radar backscatter with moisture, we focused on six forest stands in the H.J. Andrews experimental forest in central Oregon, as well as four clear cut areas and one golf course, over the summers of 2015–2017. We found significant relationships when we executed the analysis on radar images in which individual tree crowns were delineated from lidar, as opposed to SCW estimated from individual pixel backscatter. Significant differences occur in the mean backscatter between radar images taken during rain vs. dry periods (no rain for >1 h), but these effects only last for roughly 30 min after the end of a rain event. We developed a predictive model for SCW using the radar images acquired at dawn, and proved the capability of space-based radar systems to provide information for estimation of the canopy moisture under conditions of fresh rainfall during the dry season.


2021 ◽  
Author(s):  
Xiangtao Xu ◽  
Alexandra G. Konings ◽  
Marcos Longo ◽  
Andrew Feldman ◽  
Liang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document