Harmonic balance-boundary element and continuation methods for steady-state wave scattering by interior and surface-breaking cracks with contact acoustic nonlinearity

2021 ◽  
Vol 210-211 ◽  
pp. 310-324
Author(s):  
Taizo Maruyama
Wave Motion ◽  
1999 ◽  
Vol 30 (4) ◽  
pp. 367-381 ◽  
Author(s):  
J.T. Chen ◽  
M.T. Liang ◽  
I.L. Chen ◽  
S.W. Chyuan ◽  
K.H. Chen

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Salam Adel Al-Bayati ◽  
Luiz C. Wrobel

Purpose The purpose of this paper is to describe an extension of the boundary element method (BEM) and the dual reciprocity boundary element method (DRBEM) formulations developed for one- and two-dimensional steady-state problems, to analyse transient convection–diffusion problems associated with first-order chemical reaction. Design/methodology/approach The mathematical modelling has used a dual reciprocity approximation to transform the domain integrals arising in the transient equation into equivalent boundary integrals. The integral representation formula for the corresponding problem is obtained from the Green’s second identity, using the fundamental solution of the corresponding steady-state equation with constant coefficients. The finite difference method is used to simulate the time evolution procedure for solving the resulting system of equations. Three different radial basis functions have been successfully implemented to increase the accuracy of the solution and improving the rate of convergence. Findings The numerical results obtained demonstrate the excellent agreement with the analytical solutions to establish the validity of the proposed approach and to confirm its efficiency. Originality/value Finally, the proposed BEM and DRBEM numerical solutions have not displayed any artificial diffusion, oscillatory behaviour or damping of the wave front, as appears in other different numerical methods.


Author(s):  
Markus Wick ◽  
Sebastian Grabmaier ◽  
Matthias Juettner ◽  
Wolfgang Rucker

Purpose The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry. Design/methodology/approach The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry. Findings The three-phase symmetry reduces the simulated geometry to the sixth part of one pole. The motion transforms to a frequency offset in the angular Fourier series decomposition. The calculation overhead of the Fourier integrals is negligible. The air impedance approximation increases the accuracy and yields a convergence speed of three iterations per decade. Research limitations/implications Only linear materials and two-dimensional geometries are shown for clearness. Researchers are encouraged to adopt recent harmonic balance findings and to evaluate the performance and accuracy of both formulations for larger applications. Practical implications This method offers fast-frequency domain simulations in the optimization process of rotating machines and so an efficient way to treat time-dependent effects such as eddy-currents or voltage-driven coils. Originality/value This paper proposes a new, efficient and accurate method to simulate a rotating machine in the frequency domain.


Sign in / Sign up

Export Citation Format

Share Document