scholarly journals Seasonal changes of soil erosion and its spatial distribution on a long gentle hillslope in the Chinese Mollisol region

Author(s):  
Lei Wang ◽  
Fenli Zheng ◽  
Gang Liu ◽  
Xunchang J. Zhang ◽  
Glenn V. Wilson ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


2021 ◽  
Vol 8 (1) ◽  
pp. 26
Author(s):  
Manti Patil ◽  
Radheshyam Patel ◽  
Arnab Saha

Soil erosion is one of the most critical environmental hazards of recent times. It broadly affects to agricultural land and reservoir sedimentation and its consequences are very harmful. In agricultural land, soil erosion affects the fertility of soil and its composition, crop production, soil quality and land quality, yield and crop quality, infiltration rate and water holding capacity, organic matter and plant nutrient and groundwater regimes. In reservoir sedimentation process the consequences of soil erosion process are reduction of the reservoir capacity, life of reservoir, water supply, power generation etc. Based on these two aspects, an attempt has been made to the present study utilizing Revised Universal Soil Loss Equation (RUSLE) has been used in integration with remote sensing and GIS techniques to assess the spatial pattern of annual rate of soil erosion, average annual soil erosion rate and erosion prone areas in the MAN catchment. The RUSLE considers several factors such as rainfall, soil erodibility, slope length and steepness, land use and land cover and erosion control practice for soil erosion prediction. In the present study, it is found that average annual soil erosion rate for the MAN catchment is 13.01-tons/ha/year, which is higher than that of adopted and recommended values for the project. It has been found that 53% area of the MAN catchment has negligible soil erosion rate (less than 2-tons/ha/year). Its spatial distribution found on flat land of upper MAN catchment. It has been detected that 26% area of MAN catchment has moderate to extremely severe soil erosion rate (greater than 10-tons/ha/year). Its spatial distribution has been found on undulated topography of the middle MAN catchment. It is proposed to treat this area by catchment area treatment activity.


Author(s):  
Vito Ferro

Beyond damage to rainfed agricultural and forestry ecosystems, soil erosion due to water affects surrounding environments. Large amounts of eroded soil are deposited in streams, lakes, and other ecosystems. The most costly off-site damages occur when eroded particles, transported along the hillslopes of a basin, arrive at the river network or are deposited in lakes. The negative effects of soil erosion include water pollution and siltation, organic matter loss, nutrient loss, and reduction in water storage capacity. Sediment deposition raises the bottom of waterways, making them more prone to overflowing and flooding. Sediments contaminate water ecosystems with soil particles and the fertilizer and pesticide chemicals they contain. Siltation of reservoirs and dams reduces water storage, increases the maintenance cost of dams, and shortens the lifetime of reservoirs. Sediment yield is the quantity of transported sediments, in a given time interval, from eroding sources through the hillslopes and river network to a basin outlet. Chemicals can also be transported together with the eroded sediments. Sediment deposition inside a reservoir reduces the water storage of a dam. The prediction of sediment yield can be carried out by coupling an erosion model with a mathematical operator which expresses the sediment transport efficiency of the hillslopes and the channel network. The sediment lag between sediment yield and erosion can be simply represented by the sediment delivery ratio, which can be calculated at the outlet of the considered basin, or by using a distributed approach. The former procedure couples the evaluation of basin soil loss with an estimate of the sediment delivery ratio SDRW for the whole watershed. The latter procedure requires that the watershed be discretized into morphological units, areas having a constant steepness and a clearly defined length, for which the corresponding sediment delivery ratio is calculated. When rainfall reaches the surface horizon of the soil, some pollutants are desorbed and go into solution while others remain adsorbed and move with soil particles. The spatial distribution of the loading of nitrogen, phosphorous, and total organic carbon can be deduced using the spatial distribution of sediment yield and the pollutant content measured on soil samples. The enrichment concept is applied to clay, organic matter, and all pollutants adsorbed by soil particles, such as nitrogen and phosphorous. Knowledge of both the rate and pattern of sediment deposition in a reservoir is required to establish the remedial strategies which may be practicable. Repeated reservoir capacity surveys are used to determine the total volume occupied by sediment, the sedimentation pattern, and the shift in the stage-area and stage-storage curves. By converting the sedimentation volume to sediment mass, on the basis of estimated or measured bulk density, and correcting for trap efficiency, the sediment yield from the basin can be computed.


2020 ◽  
Vol 12 (3) ◽  
pp. 399 ◽  
Author(s):  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Huan Wang ◽  
Liyuan Zuo

Soil conservation and water retention are important metrics for designating key ecological functional areas and ecological red line (ERL) areas. However, research on the quantitative identification of dominant environmental factors in different ecological red line areas remains relatively inadequate, which is unfavorable for the zone-based management of ecological functional areas. This paper presents a case study of Beijing’s ERL areas. In order to objectively reflect the ecological characteristics of ERL areas in Beijing, which is mainly dominated by mountainous areas, the application of remote sensing data at a high resolution is important for the improvement of model calculation and spatial heterogeneity. Based on multi-source remote sensing data, meteorological and soil observations as well as soil erosion and water yield were calculated using the revised universal soil loss equation (RUSLE) and integrated valuation of ecosystem services and tradeoffs (InVEST) model. Combining the influencing factors, including slope, precipitation, land use type, vegetation coverage, geomorphological type, and elevation, a quantitative attribution analysis was performed on soil erosion and water yield in Beijing’s ERL areas using the geographical detector. The power of each influencing factor and their interaction factors in explaining the spatial distribution of soil erosion or water yield varied significantly among different ERL areas. Vegetation coverage was the dominant factor affecting soil erosion in Beijing’s ERL areas, explaining greater than 30% of its spatial heterogeneity. Land use type could explain the spatial heterogeneity of water yield more than 60%. In addition, the combination of vegetation coverage and slope was found to significantly enhance the spatial distribution of soil erosion (>55% in various ERL areas). The superposition of land use type and slope explained greater than 70% of the spatial distribution for water yield in ERL areas. The geographical detector results indicated that the high soil erosion risk areas and high water yield areas varied significantly among different ERL areas. Thus, in efforts to enhance ERL protection, focus should be placed on the spatial heterogeneity of soil erosion and water yield in different ERL areas.


2010 ◽  
Vol 12 (4) ◽  
pp. 502-520 ◽  
Author(s):  
U. C. Kothyari ◽  
Raaj. Ramsankaran ◽  
D. Sathish Kumar ◽  
S. K. Ghosh ◽  
Nisha Mendiratta

An automated GIS tool and its computational outcomes on the spatial distribution of runoff and soil erosion are presented. The developed tool, named Automated Soil Erosion Assessment Tool (ASEAT), simulates runoff and soil erosion rates based on the concept of erosion processes suggested by Morgan–Morgan–Finney (MMF) in 1984. ASEAT is provided with a user-friendly graphical user interface (GUI) to interact with the users. The computational algorithms used are made fully automated and have been developed using the ERDAS Macro Language (EML) and Spatial Macro Language (SML). The developed modelling methodology is applied to the data of an experimental watershed of Pathri Rao in the Indian lower Himalayan region. Generated spatial distribution of runoff potential and soil erosion rates for the studied watershed using ASEAT are depicted by maps. The model-computed surface runoff potential (145.63 mm) available in the watershed seems fair when compared with the runoff depth (176.07 mm) observed at the watershed outlet. The derived estimates of soil erosion are validated, albeit qualitatively, with field observations and seem reliable for making decisions on the adoption of soil erosion conservative measures in the watershed.


2020 ◽  
Author(s):  
Xiaoxia Zhang ◽  
Xiang Li ◽  
Yipeng Liang ◽  
Tonggang Zha

<p>Soil organic carbon (SOC) redistribution along the Loess slope under the effect of soil erosion plays an important role in understanding mechanism of SOC spatial distribution and turnover, hence to its effects on global carbon cycle. Vegetation restoration has been taken as an effective method to alleviate soil erosion on the Loess Plateau, while little research focused on the impact of vegetation restoration on the redistribution processes, especially the spatial distribution and stability of SOC. Here, we quantified the SOC stock and pool distribution on the loess slopes along geomorphic gradients under naturally regenerating forests (NF) and artificial black locust plantation (BP), using corn field as a control (CK).The results were as follows:  (1) vegetation restoration, especially NF, effectively slowed down the migration of SOC resulting from soil erosion and reduced the heterogeneity of SOC distribution. The ratios of topsoil SOC in the sedimentary area to the stable area were 109%, 143%, and 210% under the NF, BP, and CK, respectively. And (2) Vegetation restoration reduced the loss of labile organic carbon by alleviating the loss of dissolved organic carbon (DOC) and easily oxidized organic carbon (EOC) during migration. Both DOC/SOC and EOC/SOC ratios under NF and BP presented far less differences between the sedimentary and erosion zones than CK.A schematic diagram of SOC cycle patterns and redistribution along the loess slope under vegetation restoration based on our findings and discussions. The results suggested that vegetation restoration in the Loess slope, NF in particular, was an effective means for alleviating the redistribution and spatial heterogeneity of SOC and reducing soil erosion. Information from this study is useful for understanding the carbon cycles in restored ecosystems and evaluating the ecosystem services of natural and managed forests in soil erosion control and carbon sequestration.</p>


2020 ◽  
Author(s):  
Chengzhong Pan ◽  
Lan Ma

<p>The aim of this study was to investigate how the spatial distribution of grass influenced run-off and erosion from a hillslope with loess and cinnamon soils in the rocky area of Northern China. We set up a trial to test the two soils with different treatments, including bare soil (BS), grass strips on the upper (UGS) and lower (DGS) parts of the slope, grass cover over the entire slope (GS), and a grass carpet on the lower part of the slope (GC), under simulated rainfall conditions. The results showed that the run-off coefficients for the loess and cinnamon soils decreased by between 4% and 20% and by between 2% and 37%, respectively, when covered with grass. Grass spatial distribution had little effect on the run-off, but more effect on erosion than vegetation coverage degree. The most effective location of grass cover for decreasing hillslope erosion was at the foot, and the high efficiency was mainly due to controlling of rill formation and sediment deposition. The soil loss from GS, DGS, and GC on the loess and cinnamon soils was between 77% and 93% less and 55% and 80% less, respectively, compared with the loss from BS. However, the soil characteristics had little effect on soil erosion for well-vegetated slopes. The results highlight the importance of vegetation re-establishment at the foot of hillslope in controlling soil erosion.</p>


Sign in / Sign up

Export Citation Format

Share Document