scholarly journals Higher integrability for parabolic systems with Orlicz growth

2021 ◽  
Vol 300 ◽  
pp. 925-948
Author(s):  
Peter Hästö ◽  
Jihoon Ok
2000 ◽  
Vol 102 (2) ◽  
pp. 253-271 ◽  
Author(s):  
Juha Kinnunen ◽  
John L. Lewis

2009 ◽  
Vol 11 (1) ◽  
pp. 177-190
Author(s):  
Chiara Leone ◽  
◽  
Anna Verde ◽  
Giovanni Pisante ◽  

2020 ◽  
Vol 32 (6) ◽  
pp. 1539-1559
Author(s):  
Sun-Sig Byun ◽  
Wontae Kim ◽  
Minkyu Lim

AbstractWe establish a sharp higher integrability near the initial boundary for a weak solution to the following p-Laplacian type system:\left\{\begin{aligned} \displaystyle u_{t}-\operatorname{div}\mathcal{A}(x,t,% \nabla u)&\displaystyle=\operatorname{div}\lvert F\rvert^{p-2}F+f&&% \displaystyle\phantom{}\text{in}\ \Omega_{T},\\ \displaystyle u&\displaystyle=u_{0}&&\displaystyle\phantom{}\text{on}\ \Omega% \times\{0\},\end{aligned}\right.by proving that, for given {\delta\in(0,1)}, there exists {\varepsilon>0} depending on δ and the structural data such that\lvert\nabla u_{0}\rvert^{p+\varepsilon}\in L^{1}_{\operatorname{loc}}(\Omega)% \quad\text{and}\quad\lvert F\rvert^{p+\varepsilon},\lvert f\rvert^{(\frac{% \delta p(n+2)}{n})^{\prime}+\varepsilon}\in L^{1}(0,T;L^{1}_{\operatorname{loc% }}(\Omega))\implies\lvert\nabla u\rvert^{p+\varepsilon}\in L^{1}(0,T;L^{1}_{% \operatorname{loc}}(\Omega)).Our regularity results complement established higher regularity theories near the initial boundary for such a nonhomogeneous problem with {f\not\equiv 0} and we provide an optimal regularity theory in the literature.


2020 ◽  
Vol 143 ◽  
pp. 31-72 ◽  
Author(s):  
Verena Bögelein ◽  
Frank Duzaar ◽  
Juha Kinnunen ◽  
Christoph Scheven

2010 ◽  
Vol 140 (6) ◽  
pp. 1269-1308 ◽  
Author(s):  
Christoph Scheven

We consider weak solutions of parabolic systems of the typewhere the structure function b is differentiable with respect to x and satisfies standard ellipticity and growth properties with polynomial growth rate p ∊ (2n/(n + 2), 2). We investigate regularity properties of the solution, including the existence of second-order spatial derivatives, the existence of the time derivative and the higher integrability of the spatial gradient. As an application, we derive dimension estimates for the singular set of solutions of homogeneous parabolic systems. More precisely, we establish the boundprovided the structure function depends Höolder continuously on the space variable with Höolder exponent β ∊(0, 1].


Sign in / Sign up

Export Citation Format

Share Document