scholarly journals Square-mean pseudo almost automorphic process and its application to stochastic evolution equations

2011 ◽  
Vol 261 (1) ◽  
pp. 69-89 ◽  
Author(s):  
Zhang Chen ◽  
Wei Lin
2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Jing Cui ◽  
Litan Yan

We consider a class of nonautonomous stochastic evolution equations in real separable Hilbert spaces. We establish a new composition theorem for square-mean almost automorphic functions under non-Lipschitz conditions. We apply this new composition theorem as well as intermediate space techniques, Krasnoselskii fixed point theorem, and Banach fixed point theorem to investigate the existence of square-mean almost automorphic mild solutions. Some known results are generalized and improved.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Li Xi-liang ◽  
Han Yu-liang

This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear nonautonomous functional integrodifferential stochastic evolution equations in real separable Hilbert spaces. Using the so-called “Acquistapace-Terreni” conditions and Banach contraction principle, the existence, uniqueness, and asymptotical stability results of square-mean almost automorphic mild solutions to such stochastic equations are established. As an application, square-mean almost automorphic solution to a concrete nonautonomous integro-differential stochastic evolution equation is analyzed to illustrate our abstract results.


1981 ◽  
Vol 84 ◽  
pp. 195-208 ◽  
Author(s):  
B. L. Rozovskii ◽  
A. Shimizu

In this paper, we shall discuss the smoothness of solutions of stochastic evolution equations, which has been investigated in N. V. Krylov and B. L. Rozovskii [2] [3], to establish the existence of a filtering transition density.


Sign in / Sign up

Export Citation Format

Share Document