scholarly journals Square-mean piecewise almost automorphic mild solutions to a class of impulsive stochastic evolution equations

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Junwei Liu ◽  
Ruihong Ren ◽  
Rui Xie
2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Jing Cui ◽  
Litan Yan

We consider a class of nonautonomous stochastic evolution equations in real separable Hilbert spaces. We establish a new composition theorem for square-mean almost automorphic functions under non-Lipschitz conditions. We apply this new composition theorem as well as intermediate space techniques, Krasnoselskii fixed point theorem, and Banach fixed point theorem to investigate the existence of square-mean almost automorphic mild solutions. Some known results are generalized and improved.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Li Xi-liang ◽  
Han Yu-liang

This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear nonautonomous functional integrodifferential stochastic evolution equations in real separable Hilbert spaces. Using the so-called “Acquistapace-Terreni” conditions and Banach contraction principle, the existence, uniqueness, and asymptotical stability results of square-mean almost automorphic mild solutions to such stochastic equations are established. As an application, square-mean almost automorphic solution to a concrete nonautonomous integro-differential stochastic evolution equation is analyzed to illustrate our abstract results.


2019 ◽  
Vol 22 (4) ◽  
pp. 1086-1112 ◽  
Author(s):  
Linxin Shu ◽  
Xiao-Bao Shu ◽  
Jianzhong Mao

Abstract In this paper, we consider the existence of mild solutions and approximate controllability for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order 1 < α < 2. As far as we know, there are few articles investigating on this issue. Firstly, the mild solutions to the equations are proved using Laplace transform of the Riemann-Liouville derivative. Moreover, the estimations of resolve operators involving the Riemann-Liouville fractional derivative of order 1 < α < 2 are given. Then, the existence results are obtained via the noncompact measurement strategy and the Mönch fixed point theorem. The approximate controllability of this nonlinear Riemann-Liouville fractional nonlocal stochastic systems of order 1 < α < 2 is concerned under the assumption that the associated linear system is approximately controllable. Finally, the approximate controllability results are obtained by using Lebesgue dominated convergence theorem.


Author(s):  
CARLO MARINELLI ◽  
MICHAEL RÖCKNER

In the semigroup approach to stochastic evolution equations, the fundamental issue of uniqueness of mild solutions is often "reduced" to the much easier problem of proving uniqueness for strong solutions. This reduction is usually carried out in a formal way, without really justifying why and how one can do that. We provide sufficient conditions for uniqueness of mild solutions to a broad class of semilinear stochastic evolution equations with coefficients satisfying a monotonicity assumption.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Min Yang

AbstractIn this paper, we investigate the existence uniqueness of mild solutions for a class of ψ-Caputo fractional stochastic evolution equations with varying-time delay driven by fBm, which seems to be the first theoretical result of the ψ-Caputo fractional stochastic evolution equations. Alternative conditions to guarantee the existence uniqueness of mild solutions are obtained using fractional calculus, stochastic analysis, fixed point technique, and noncompact measure method. Moreover, an example is presented to illustrate the effectiveness and feasibility of the obtained abstract results.


Author(s):  
Pengyu Chen ◽  
Xuping Zhang ◽  
Yongxiang Li

AbstractIn this article, we are concerned with a class of fractional stochastic evolution equations with nonlocal initial conditions in Hilbert spaces. The existence of mild solutions is obtained under the situation that the nonlinear term satisfies some appropriate growth conditions by using fractional calculations, Schauder fixed point theorem, stochastic analysis theory,


Sign in / Sign up

Export Citation Format

Share Document