scholarly journals Chemical composition and biological activities of Juçara (Euterpe edulis Martius) fruit by-products, a promising underexploited source of high-added value compounds

2019 ◽  
Vol 55 ◽  
pp. 325-332 ◽  
Author(s):  
Jéssica A.A. Garcia ◽  
Rúbia C.G. Corrêa ◽  
Lillian Barros ◽  
Carla Pereira ◽  
Rui M.V. Abreu ◽  
...  
Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 70 ◽  
Author(s):  
Natália Conceição ◽  
Bianca R. Albuquerque ◽  
Carla Pereira ◽  
Rúbia C. G. Corrêa ◽  
Camila B. Lopes ◽  
...  

Camu-camu (Myrciaria dubia (Kunth) McVaugh) is a fruit economically relevant to the Amazon region, mostly consumed in the form of processed pulp. Our aim was to perform an unprecedented comparative study on the chemical composition and bioactivities of the camu-camu pulp and industrial bio-residues (peel and seed), and then the most promising fruit part was further explored as a functionalized ingredient in yogurt. A total of twenty-three phenolic compounds were identified, with myricetin-O-pentoside and cyanindin-3-O-glucoside being the main compounds in peels, followed by p-coumaroyl hexoside in the pulp, and ellagic acid in the seeds. The peel displayed the richest phenolic profile among samples, as well as the most significant antibacterial (MICs = 0.625–10 mg/mL) and anti-proliferative (GI50 = 180 µg/mL against HeLa cells) activities. For this reason, it was selected to be introduced in a food system (yogurt). Taken together, our results suggest the possibility of using the camu-camu peel as a source of food additives.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


2021 ◽  
Vol 11 (23) ◽  
pp. 11097
Author(s):  
Ana Lima ◽  
Filipe Arruda ◽  
Jorge Medeiros ◽  
José Baptista ◽  
João Madruga ◽  
...  

The scientific community is paying increasing attention to plant waste valorization, and also to “greener” practices in the agriculture, food and cosmetic sectors. In this context, unused forest biomass (e.g., leaves, seed cones, branches/twigs, bark and sapwood) of Cryptomeria japonica, a commercially important tree throughout Asia and the Azores Archipelago (Portugal), is currently waste/by-products of wood processing that can be converted into eco-friendly and high added-value products, such as essential oils (EOs), with social, environmental and economic impacts. Plant-derived EOs are complex mixtures of metabolites, mostly terpenes and terpenoids, with valuable bioactivities (e.g., antioxidant, anti-inflammatory, anticancer, neuroprotective, antidepressant, antimicrobial, antiviral and pesticide), which can find applications in several industries, such as pharmaceutical, medical, aromatherapy, food, cosmetic, perfumery, household and agrochemical (e.g., biopesticides), with manifold approaches. The EOs components are also of value for taxonomic investigations. It is known that the variation in EOs chemical composition and, consequently, in their biological activities and commercial use, is due to different exogenous and endogenous factors that can lead to ecotypes or chemotypes in the same plant species. The present paper aims to provide an overview of the chemical composition, biological properties and proposals of valorization of C. japonica EO from several countries, and also to indicate gaps in the current knowledge.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 498 ◽  
Author(s):  
Radu Claudiu Fierascu ◽  
Georgeta Temocico ◽  
Irina Fierascu ◽  
Alina Ortan ◽  
Narcisa Elena Babeanu

The strawberries represent in our days one of the main fresh fruits consumed globally, inevitably leading to large amounts of by-products and wastes. Usually appreciated because of their specific flavor, the strawberries also possess biological properties, including antioxidant, antimicrobial, or anti-inflammatory effects. In spite of the wide spread of the Fragaria genus, few species represent the subject of the last decade scientific research. The main components identified in the Fragaria species are presented, as well as several biological properties, as emerging from the scientific papers published in the last decade.


2015 ◽  
Vol 77 ◽  
pp. 125-131 ◽  
Author(s):  
Mayara Schulz ◽  
Graciele da Silva Campelo Borges ◽  
Luciano Valdemiro Gonzaga ◽  
Siluana Katia Tischer Seraglio ◽  
Isis Simon Olivo ◽  
...  

2020 ◽  
pp. 0958305X2091993
Author(s):  
Maria Celeiro ◽  
J Pablo Lamas ◽  
Rosa Arcas ◽  
Marta Lores

The chemical composition of several by-products, chips, screw waters, and concentrates from a fiberboards manufacture green industrial process, which only employs wood and water, was deeply evaluated. The three by-products analyzed represent different steps of the industrial process. In addition, different types of wood: pine, walnut, chestnut, oak and cherry tree, were evaluated. For all of them, total polyphenols content, and antioxidant activity have been assessed, showing significant differences. To characterize the volatile compounds, an environmentally friendly technique, solid-phase microextraction has been employed. Besides, aqueous and generally recognized as safe organic extracts obtained from the by-products have been prepared, and their chromatographic fingerprint was obtained by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry to identify extractable organic wood components. Significant differences were observed between the studied by-products and wood types. More than 30 different compounds were successfully identified in the screw waters, and concentrates, including terpenes, sesquiterpenes, or polyphenols. Regarding the obtained extracts, up to 30 compounds were identified in the chips, screw waters, and concentrate extracts, highlighting the presence of 13 polyphenols in the cherry tree chips and more than 20 compounds with interesting properties in the concentrate extracts. This work contributes to improve the knowledge about the chemical composition of several wood industry by-products, which could be exploited to obtain natural extracts with added value for their reuse in the food, cosmetic, or pharmaceutical industry, reducing also the environmental impact of the industrial activity.


2019 ◽  
Vol 11 (18) ◽  
pp. 5049 ◽  
Author(s):  
Mena Ritota ◽  
Pamela Manzi

Agri-food industry generally produces huge volumes of wastes all over the world, and their disposal is a threat to the environment and public health. The chemical composition of most of these wastes make them be defined as lignocellulosic materials, so they could be a suitable substrate for solid-state fermentation process operated by mushrooms. White-rot fungi are well known for their degradation ability of lignocellulosic material, and many scientific works reported the use of different substrates for their production. Biotechnological treatments of agri-food wastes by mushrooms could be considered an eco-friendly solution to reuse and valorize them, besides to reduce their environmental impact. In this way, wastes would be transformed into new resources to produce added-value food products, besides representing an economic return for the same industries. The aim of this review is to provide an overview of the recent literature concerning the use of different agri-food residues as growth substrates for Pleurotus spp. cultivation, with attention to their effects on the growth and chemical composition of the cultivated mushrooms.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 137
Author(s):  
M. Fraga-Corral ◽  
P. Otero ◽  
J. Echave ◽  
P. Garcia-Oliveira ◽  
M. Carpena ◽  
...  

During recent decades, consumers have been continuously moving towards the substitution of synthetic ingredients of the food industry by natural products, obtained from vegetal, animal or microbial sources. Additionally, a circular economy has been proposed as the most efficient production system since it allows for reducing and reutilizing different wastes. Current agriculture is responsible for producing high quantities of organic agricultural waste (e.g., discarded fruits and vegetables, peels, leaves, seeds or forestall residues), that usually ends up underutilized and accumulated, causing environmental problems. Interestingly, these agri-food by-products are potential sources of valuable bioactive molecules such as tannins. Tannins are phenolic compounds, secondary metabolites of plants widespread in terrestrial and aquatic natural environments. As they can be found in plenty of plants and herbs, they have been traditionally used for medicinal and other purposes, such as the leather industry. This fact is explained by the fact that they exert plenty of different biological activities and, thus, they entail a great potential to be used in the food, nutraceutical and pharmaceutical industry. Consequently, this review article is directed towards the description of the biological activities exerted by tannins as they could be further extracted from by-products of the agri-food industry to produce high-added-value products.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1630
Author(s):  
Beatriz Rodríguez-Martínez ◽  
Beatriz Gullón ◽  
Remedios Yáñez

Nowadays, the potato is one of the most cultivated and consumed food crops in the world and, in recent years, its production has experienced a sharp increase. Its industrial processing generates several by-products that are wasted and cause economic and environmental problems. Among them, potato peel stands out, representing up to 10% of the total potato residues obtained in the processing. On the other hand, these wastes, in addition to presenting antioxidant compounds, are rich in interesting chemical compounds of great value in a biorefinery model. This review summarizes the main compounds present in potato skins as well as the most used and innovative extraction methods employed for their isolation, with special emphasis on the fractions with biological activities. In addition, a sustainable biorefinery proposal focused on obtaining high added-value products with potential applications in the pharmaceutical, food, nutraceutical, or cosmetic industries is included.


Sign in / Sign up

Export Citation Format

Share Document